bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2020–11–29
four papers selected by
Rafael Antonio Casuso Pérez, University of Granada



  1. Front Cell Dev Biol. 2020 ;8 604240
      The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
    Keywords:  SR-mitochondrial contact; cardiovascular diseases; metabolic transition; mitochondria-associated ER membrane; mitochondrial bioenergetics
    DOI:  https://doi.org/10.3389/fcell.2020.604240
  2. Int J Environ Res Public Health. 2020 Nov 21. pii: E8650. [Epub ahead of print]17(22):
      Impaired muscle recovery (size and strength) following a disuse period commonly occurs in older adults. Many of these individuals are not able to adequately exercise due to pain and logistic barriers. Thus, nutritional and pharmacological therapeutics, that are translatable, are needed to promote muscle recovery following disuse in older individuals. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be a suitable therapeutic target due to pleiotropic regulation of skeletal muscle. This review focuses on nutritional and pharmacological interventions that target PGC-1α and related Sirtuin 1 (SIRT1) and 5' AMP-activated protein kinase (AMPKα) signaling in muscle and thus may be rapidly translated to prevent muscle disuse atrophy and promote recovery. In this review, we present several therapeutics that target PGC-1α in skeletal muscle such as leucine, β-hydroxy-β-methylbuyrate (HMB), arginine, resveratrol, metformin and combination therapies that may have future application to conditions of disuse and recovery in humans.
    Keywords:  PGC-1alpha; disuse; leucine; metformin; resveratrol; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.3390/ijerph17228650
  3. Exp Gerontol. 2020 Nov 20. pii: S0531-5565(20)30509-X. [Epub ahead of print] 111161
       INTRODUCTION: Muscle fiber capillarization plays a fundamental role in the regulation of skeletal muscle mass maintenance. However, it remains unclear to what extent capillarization is related to various other skeletal muscle characteristics. In this study we determined whether muscle fiber capillarization is independently associated with measures of skeletal muscle mass, both on a whole-body and cellular level, and post-absorptive muscle protein synthesis rates in healthy older men.
    METHODS: Forty-six healthy older (70 ± 4 y) men participated in a trial during which basal muscle protein synthesis rates were assessed using stable isotope tracer methodology. Blood and muscle biopsy samples were collected to assess post-absorptive muscle protein synthesis rates over a 3-hour period. Immunohistochemistry was performed to determine various indices of muscle fiber capillarization, size, type distribution, and myonuclear content/domain size. Dual energy x-ray absorptiometry scans were performed to determine whole-body and appendicular lean tissue mass.
    RESULTS: Capillary-to-fiber ratio (C/Fi) and perimeter exchange (CFPE) index correlated with whole-body lean tissue mass (r = 0.43, P < 0.01 and r = 0.25, P < 0.10, respectively), appendicular lean tissue mass (r = 0.52, P < 0.001 and r = 0.37, P < 0.05, respectively) as well as appendicular lean tissue mass divided by body mass index (r = 0.65, P < 0.001 and r = 0.62, P < 0.001, respectively). Muscle fiber size correlated with C/Fi (r = 0.45, P < 0.01), but not with CFPE index. No associations were observed between different indices of muscle fiber capillarization and post-absorptive muscle protein synthesis rates in healthy, older men.
    CONCLUSION: The present study provides further evidence that muscle fiber capillarization may be a critical factor in the regulation of skeletal muscle maintenance in healthy older men.
    Keywords:  Fractional synthetic rate; Lean body mass; Muscle perfusion; Sarcopenia
    DOI:  https://doi.org/10.1016/j.exger.2020.111161
  4. Front Physiol. 2020 ;11 583478
      Exercise training is one of the most effective interventional strategies for sarcopenia in aged people. Nevertheless, the underlying mechanisms are not well recognized. Increasing studies have reported abnormal regulation of autophagy in aged skeletal muscle. Our current study aims to explore the efficiency of exercise interventions, including treadmill exercise, resistance exercise, alternating exercise with treadmill running and resistance exercise, and voluntary wheel running, on 21-month-old rats with sarcopenia and to detect the underlying mechanisms. Results showed the declined mass of gastrocnemius muscle with deficient autophagy and excessive apoptosis as a result of up-regulated Atrogin-1 and MuRF1, declined Beclin1 level and LC3-II/LC3-I ratio, accumulated p62, increased Bax, and reduced Bcl-2 levels, and also exhibited a defective mitochondrial quality control due to declined PGC-1α, Mfn2, Drp1, and PINK1 levels. However, 12-week exercise interventions suppressed the decline in mass loss of skeletal muscle, accompanied by down-regulated Atrogin-1 and MuRF1, increased Beclin1 level, improved LC3-II/LC3-I ratio, declined p62 level, and reduced Bax and increased Bcl-2 level, as well as enhanced mitochondrial function due to the increased PGC-1α, Mfn2, Drp1, and PINK1 levels. Moreover, exercise interventions also down-regulated the phosphorylation of Akt, mTOR, and FoxO3a, and up-regulated phosphorylated AMPK to regulate the functional status of autophagy and mitochondrial quality control. Therefore, exercise-induced autophagy is beneficial for remedying sarcopenia by modulating Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control, and resistance exercise exhibits the best interventional efficiency.
    Keywords:  Akt/FoxO3a signal pathway; Akt/mTOR signal pathway; autophagy; exercise intervention; mitochondrial quality control; sarcopenia
    DOI:  https://doi.org/10.3389/fphys.2020.583478