bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2021‒11‒28
six papers selected by
Rafael Antonio Casuso Pérez
University of Granada


  1. Pflugers Arch. 2021 Nov 22.
      Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
    Keywords:  Heart disease; Inflammation; Metabolic diseases; MicroRNAs; Mitochondrial dysfunction; Oxidative stress
    DOI:  https://doi.org/10.1007/s00424-021-02638-8
  2. Front Cardiovasc Med. 2021 ;8 752640
      Rationale: Regular active exercise is considered therapeutic for cardiovascular disease, in part by increasing mitochondrial respiratory capacity, but a significant amount of exercise capacity is determined genetically. Animal models, demonstrating either high capacity aerobic running (HCR) or low capacity aerobic running (LCR) phenotypes, have been developed to study the intrinsic contribution, with HCR rats subsequently characterized as "disease resistant" and the LCRs as "disease prone." Enhanced cardioprotection in HCRs has been variable and mutifactoral, but likely includes a metabolic component. These studies were conducted to determine the influence of intrinsic aerobic phenotype on cardiac mitochondrial function before and after ischemia and reperfusion. Methods: A total of 34 HCR and LCR rats were obtained from the parent colony at the University of Toledo, housed under sedentary conditions, and fed normal chow. LCR and HCR animals were randomly assigned to either control or ischemia-reperfusion (IR). On each study day, one HCR/LCR pair was anesthetized, and hearts were rapidly excised. In IR animals, the hearts were immediately flushed with iced hyperkalemic, hyperosmotic, cardioplegia solution, and subjected to global hypothermic ischemic arrest (80 min). Following the arrest, the hearts underwent warm reperfusion (120 min) using a Langendorff perfusion system. Following reperfusion, the heart was weighed and the left ventricle (LV) was isolated. A midventricular ring was obtained to estimate infarction size [triphenyltetrazolium chloride (TTC)] and part of the remaining tissue (~150 mg) was transferred to a homogenation buffer on ice. Isolated mitochondria (MITO) samples were prepared and used to determine respiratory capacity under different metabolic conditions. In control animals, MITO were obtained and prepared similarly immediately following anesthesia and heart removal, but without IR. Results: In the control rats, both resting and maximally stimulated respiratory rates were higher (32 and 40%, respectively; p < 0.05) in HCR mitochondria compared to LCR. After IR, resting MITO respiratory rates were decreased to about 10% of control in both strains, and the augmented capacity in HCRs was absent. Maximally stimulated rates also were decreased more than 50% from control and were no longer different between phenotypes. Ca++ retention capacity and infarct size were not significantly different between HCR and LCR (49.2 ± 5.6 vs. 53.7 ± 4.9%), nor was average coronary flow during reperfusion or arrhythmogenesis. There was a significant loss of mitochondria following IR, which was coupled with decreased function in the remaining mitochondria in both strains. Conclusion: Cardiac mitochondrial capacity from HCR was significantly higher than LCR in the controls under each condition. After IR insult, the cardiac mitochondrial respiratory rates were similar between phenotypes, as was Ca++ retention capacity, infarct size, and arrhythmogenicity, despite the increased mitochondrial capacity in the HCRs before ischemia. Relatively, the loss of respiratory capacity was actually greater in HCR than LCR. These data could suggest limits in the extent to which the HCR phenotype might be "protective" against acute tissue stressors. The extent to which any of these deficits could be "rescued" by adding an active exercise component to the intrinsic phenotype is unknown.
    Keywords:  HCR; LCR; aerobic capacity; coronary occlusion; energetics; intrinsic; mitochondria
    DOI:  https://doi.org/10.3389/fcvm.2021.752640
  3. Free Radic Biol Med. 2021 Nov 22. pii: S0891-5849(21)00828-5. [Epub ahead of print]
      The progressive and generalized loss of skeletal muscle mass and function, also known as sarcopenia, underlies disability, increasing adverse outcomes and poor quality of life in older people. Exercise interventions are commonly recommended as the primary treatment for sarcopenia. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a vital role in regulating metabolism, mitochondrial function, and the ROS-dependent adaptations of skeletal muscle, as the response to exercise. To investigate the contribution of Nrf2 to the benefits of exercise interventions in older age, aged (∼22 month old) Nrf2 knockout (Nrf2-KO) mice and age-matched wild-type (WT) C57Bl6/J mice were randomly divided into 2 groups (sedentary or exercise group). We found that exercise interventions improved skeletal muscle function and restored the sarcopenia-like phenotype in WT mice, accompanied with the increasing mRNA level of Nrf2. While these alternations were minimal in Nrf2-KO mice after exercise. Further studies indicated that Nrf2 could increase the stability of Drp1 through deubiquitinating and promote Drp1-dependent mitochondrial fission to attenuate mitochondrial disorder. We also observed the effects of sulforaphane (SFN), a Nrf2 activator, in restoring mitochondrial function in senescent C2C12 cells and improving sarcopenia in older WT mice, which were abolished by Nrf2 deficiency. These results indicated that some benefits of exercise intervention to skeletal muscle were Nrf2 mediated, and a future work should focus on Nrf2 signaling to identify a pharmacological treatment for sarcopenia.
    Keywords:  Aging; Drp1; Mitochondrial fission; Nrf2; Sarcopenia
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.11.030
  4. Exp Mol Med. 2021 Nov 26.
      C1q/TNF-related protein 1 (CTRP1) is a CTRP family member that has collagenous and globular C1q-like domains. The secreted form of CTRP1 is known to be associated with cardiovascular and metabolic diseases, but its cellular roles have not yet been elucidated. Here, we showed that cytosolic CTRP1 localizes to the endoplasmic reticulum (ER) membrane and that knockout or depletion of CTRP1 leads to mitochondrial fission defects, as demonstrated by mitochondrial elongation. Mitochondrial fission events are known to occur through an interaction between mitochondria and the ER, but we do not know whether the ER and/or its associated proteins participate directly in the entire mitochondrial fission event. Interestingly, we herein showed that ablation of CTRP1 suppresses the recruitment of DRP1 to mitochondria and provided evidence suggesting that the ER-mitochondrion interaction is required for the proper regulation of mitochondrial morphology. We further report that CTRP1 inactivation-induced mitochondrial fission defects induce apoptotic resistance and neuronal degeneration, which are also associated with ablation of DRP1. These results demonstrate for the first time that cytosolic CTRP1 is an ER transmembrane protein that acts as a key regulator of mitochondrial fission, providing new insight into the etiology of metabolic and neurodegenerative disorders.
    DOI:  https://doi.org/10.1038/s12276-021-00701-z
  5. Physiol Rep. 2021 Nov;9(22): e15125
      Ischemic skeletal muscle conditions are known to augment exercise-induced increases in blood pressure (BP). Aging is also a factor that enhances the pressor response to exercise. However, the effects of aging on the BP response to ischemic exercise remain unclear. We, therefore, tested the hypothesis that aging enhances the BP response to rhythmic handgrip (RHG) exercise during postexercise muscle ischemia (PEMI). We divided the normotensive participants without cardiovascular diseases into three age groups: young (n = 26; age, 18-28 years), middle-aged (n = 23; age, 35-59 years), and older adults (n = 23; age, 60-80 years). The participants performed RHG exercise with minimal effort for 1 min after rest with and without PEMI, which was induced by inflating a cuff on the upper arm just before the isometric handgrip exercise ended; the intensity was 30% of maximal voluntary contraction force. Under PEMI, the increase in diastolic BP (DBP) from rest to RHG exercise in the older adult group (Δ13 ± 2 mmHg) was significantly higher than that in the young (Δ5 ± 2 mmHg) and middle-aged groups (Δ6 ± 1 mmHg), despite there being no significant difference between the groups in the DBP response from rest to RHG exercise without PEMI. Importantly, based on multiple regression analysis, age remained a significant independent determinant of both the SBP and DBP responses to RHG exercise during PEMI (p < 0.01). These findings indicate that aging enhances the pressor response to ischemic rhythmic exercise.
    Keywords:  acidosis; exercise pressor reflex; muscle mechanoreflex; muscle metaboreflex; postexercise muscle ischemia
    DOI:  https://doi.org/10.14814/phy2.15125
  6. Elife. 2021 Nov 23. pii: e73215. [Epub ahead of print]10
      Skeletal muscle regeneration is regulated by coordinated activation of multiple signaling pathways activated in both injured myofibers and satellite cells. The unfolded protein response (UPR) is a major mechanism that detects and alleviates protein-folding stresses in ER. However, the role of individual arms of the UPR in skeletal muscle regeneration remain less understood. In the present study, we demonstrate that IRE1α (also known as ERN1) and its downstream target, XBP1, are activated in skeletal muscle of mice upon injury. Myofiber-specific ablation of IRE1 or XBP1 in mice diminishes skeletal muscle regeneration that is accompanied with reduced number of satellite cells and their fusion to injured myofibers. Ex vivo cultures of myofiber explants demonstrate that ablation of IRE1α reduces the proliferative capacity of myofiber-associated satellite cells. Myofiber-specific deletion of IRE1α dampens Notch signaling and canonical NF-kB pathway in skeletal muscle of mice. Our results also demonstrate that targeted ablation of IRE1α reduces skeletal muscle regeneration in the mdx mice, a model of Duchenne muscular dystrophy. Collectively, our results reveal that the IRE1α-mediated signaling promotes muscle regeneration through augmenting the proliferation of satellite cells in a cell non-autonomous manner.
    Keywords:  cell biology; mouse; regenerative medicine; stem cells
    DOI:  https://doi.org/10.7554/eLife.73215