bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2021–03–07
33 papers selected by
Catalina Vasilescu, University of Helsinki



  1. Nature. 2021 Mar 03.
      Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. Whereas the mechanisms coordinating the segregation of the genome are well known, the processes that ensure organelle segregation between daughter cells remain less well understood1. Here we identify multiple actin assemblies with distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria during mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.
    DOI:  https://doi.org/10.1038/s41586-021-03309-5
  2. Cell Stem Cell. 2021 Mar 04. pii: S1934-5909(21)00061-8. [Epub ahead of print]28(3): 394-408
      Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
    Keywords:  L-2-HG; ROS; TCA cycle; acetyl-CoA; epigenetics; mitochondrial dynamics; pyruvate
    DOI:  https://doi.org/10.1016/j.stem.2021.02.011
  3. J Clin Immunol. 2021 Mar 03.
      Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy.
    METHODS: We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY.
    RESULTS: We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction.
    CONCLUSION: Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.
    Keywords:  Variants; cardiomyopathy; chagas; inflammation; mitochondria; pathogenic
    DOI:  https://doi.org/10.1007/s10875-021-01000-y
  4. FEBS Lett. 2021 Mar 02.
      Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
    Keywords:  Diagnostics; Genetics; Metabolic disorders; Mitochondrial disease; Multi-omics; Non-coding; Oxidative phosphorylation; Variants
    DOI:  https://doi.org/10.1002/1873-3468.14068
  5. Hum Mol Genet. 2021 Feb 27. pii: ddab059. [Epub ahead of print]
      Mitochondrial respiratory chain disorders are empirically managed with variable antioxidant, cofactor, and vitamin 'cocktails'. However, clinical trial validated and approved compounds, or doses, do not exist for any single or combinatorial mitochondrial disease therapy. Here, we sought to pre-clinically evaluate whether rationally-designed mitochondrial medicine combinatorial regimens might synergistically improve survival, health, and physiology in translational animal models of respiratory chain complex I disease. Having previously demonstrated that gas-1(fc21) complex I subunit NDUFS2-/-  C. elegans have short lifespan that can be significantly rescued with 17 different metabolic modifiers, signaling modifiers, or antioxidants, here we evaluated 11 random combinations of these 3 treatment classes on gas-1(fc21) lifespan. Synergistic rescue occurred only with glucose, nicotinic acid, and N-acetylcysteine (Glu + NA + NAC), yielding improved mitochondrial membrane potential that reflects integrated respiratory chain function, without exacerbating oxidative stress and while reducing mitochondrial stress (UPRmt) and improving intermediary metabolic disruptions at the levels of the transcriptome, steady-state metabolites, and intermediary metabolic flux. Equimolar Glu + NA + NAC dosing in a zebrafish vertebrate model of rotenone-based complex I inhibition synergistically rescued larval activity, brain death, lactate, ATP, and glutathione levels. Overall, these data provide objective preclinical evidence in two evolutionary-divergent animal models of mitochondrial complex I disease to demonstrate that combinatorial Glu + NA + NAC therapy significantly improved animal resiliency in the face of stressors that exacerbate their underlying metabolic deficiency, thereby preventing acute neurologic and biochemical decompensation. Clinical trials are warranted to evaluate the efficacy of this lead combinatorial therapy regimen to improve resiliency and health outcomes in human subjects with mitochondrial disease.
    DOI:  https://doi.org/10.1093/hmg/ddab059
  6. Metabolites. 2021 Feb 16. pii: 112. [Epub ahead of print]11(2):
      Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
    Keywords:  amino acids; compartmentalization; cytosol; metabolomics; mitochondria; solute carriers; transporters
    DOI:  https://doi.org/10.3390/metabo11020112
  7. Bio Protoc. 2019 Jul 05. 9(13): e3283
      Detecting heteroplasmies in the mitochondrial DNA (mtDNA) has been a challenge for many years. In the past, Sanger sequencing was the main option to perform this analysis, however, this method could not detect low frequency heteroplasmies. Massive Parallel Sequencing (MPS) provides the opportunity to study the mtDNA in depth, but a controlled pipeline is necessary to reliably retrieve and quantify the low frequency variants. It has been shown that differences in methods can significantly affect the number and frequency of the retrieved variants. In this protocol, we present a method involving both wet lab and bioinformatics that allows identifying and quantifying single nucleotide variants in the full mtDNA sequence, down to a heteroplasmic load of 1.5%. For this, we set up a PCR-based amplification of the mtDNA, followed by MPS using Illumina chemistry, and variant calling with two different algorithms, mtDNA server and Mutect. The PCR amplification is used to enrich the mitochondrial fraction, while the bioinformatic processing with two algorithms is used to discriminate the true heteroplasmies from background noise. The protocol described here allows for deep sequencing of the mitochondrial DNA in bulk DNA samples as well as single cells (both large cells such as human oocytes, and small-sized single cells such as human embryonic stem cells) with minor modifications to the protocol.
    Keywords:  Amplicon sequencing; Heteroplasmy; Long range PCR; Massive parallel sequencing; mtDNA
    DOI:  https://doi.org/10.21769/BioProtoc.3283
  8. Mitochondrion. 2021 Feb 24. pii: S1567-7249(21)00019-2. [Epub ahead of print]
      Mitochondrial DNA (mtDNA) mutations cause severe maternally inherited disorders, although mechanisms regulating mother-to-offspring transmission have not yet been elucidated. To investigate if mtDNA mutations affect embryonic development, we compared morphology, viability and mtDNA content in control (n=165) and mitochondrial (n=16) human embryos at the cleavage-stage. mtDNA copy number (CN) was assessed in one or two embryonic cells, by real-time PCR. The presence of a maternal or embryonic mtDNA mutation did not impact on either embryonic quality or viability. mtDNA CN was not altered by mtDNA mutations, suggesting that mtDNA defects do not modify mtDNA metabolism at this early stage.
    Keywords:  cleavage-stage embryo; embryonic development; mitochondrion; mtDNA copy number; mtDNA mutation; selection
    DOI:  https://doi.org/10.1016/j.mito.2021.02.012
  9. iScience. 2021 Mar 19. 24(3): 102138
      Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and Caenorhabditis elegans. Our analysis shows that a large fraction of mtDNA breakpoint positions can be explained by the thermodynamics of short ≤ 5-nt misalignments. The significance of short DNA misalignments supports an important role for erroneous non-homologous and micro-homology-dependent DSB repair in mtDNA deletion formation. The consistency of the results of our analysis across species further suggests a shared mode of mtDNA deletion mutagenesis.
    Keywords:  Bioinformatics; Molecular Genetics; Sequence Analysis
    DOI:  https://doi.org/10.1016/j.isci.2021.102138
  10. PLoS Biol. 2021 Mar 03. 19(3): e3001139
      Mutations in mitochondrial replicative polymerase PolγA lead to progressive external ophthalmoplegia (PEO). While PolγA is the known central player in mitochondrial DNA (mtDNA) replication, it is unknown whether a regulatory process exists on the mitochondrial outer membrane which controlled its entry into the mitochondria. We now demonstrate that PolγA is ubiquitylated by mitochondrial E3 ligase, MITOL (or MARCH5, RNF153). Ubiquitylation in wild-type (WT) PolγA occurs at Lysine 1060 residue via K6 linkage. Ubiquitylation of PolγA negatively regulates its binding to Tom20 and thereby its mitochondrial entry. While screening different PEO patients for mitochondrial entry, we found that a subset of the PolγA mutants is hyperubiquitylated by MITOL and interact less with Tom20. These PolγA variants cannot enter into mitochondria, instead becomes enriched in the insoluble fraction and undergo enhanced degradation. Hence, mtDNA replication, as observed via BrdU incorporation into the mtDNA, was compromised in these PEO mutants. However, by manipulating their ubiquitylation status by 2 independent techniques, these PEO mutants were reactivated, which allowed the incorporation of BrdU into mtDNA. Thus, regulated entry of non-ubiquitylated PolγA may have beneficial consequences for certain PEO patients.
    DOI:  https://doi.org/10.1371/journal.pbio.3001139
  11. EMBO J. 2021 Mar 05. e106283
      Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
    Keywords:  ATAD3B; mitochondrial DNA; mitophagy; oxidative stress
    DOI:  https://doi.org/10.15252/embj.2020106283
  12. EMBO Rep. 2021 Mar 03. e51606
      Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
    Keywords:  mitochondrial membrane potential; mitochondrial stress responses; oxidative phosphorylation
    DOI:  https://doi.org/10.15252/embr.202051606
  13. Cell Metab. 2021 Mar 02. pii: S1550-4131(21)00066-8. [Epub ahead of print]33(3): 470-472
      When T cells are exposed to continuous antigen stimulation, they become exhausted. Here, we preview findings from Scharping et al. (2021), who have illuminated the molecular mechanism by which the persistent antigen stimulation and severe hypoxic conditions in the intratumoral environment drive T cell exhaustion, losing their cytotoxic function and anticancer effects.
    DOI:  https://doi.org/10.1016/j.cmet.2021.02.010
  14. Metabolites. 2021 Feb 18. pii: 117. [Epub ahead of print]11(2):
      Itaconate is a small molecule metabolite that is endogenously produced by cis-aconitate decarboxylase-1 (ACOD1) in mammalian cells and influences numerous cellular processes. The metabolic consequences of itaconate in cells are diverse and contribute to its regulatory function. Here, we have applied isotope tracing and mass spectrometry approaches to explore how itaconate impacts various metabolic pathways in cultured cells. Itaconate is a competitive and reversible inhibitor of Complex II/succinate dehydrogenase (SDH) that alters tricarboxylic acid (TCA) cycle metabolism leading to succinate accumulation. Upon activation with coenzyme A (CoA), itaconyl-CoA inhibits adenosylcobalamin-mediated methylmalonyl-CoA (MUT) activity and, thus, indirectly impacts branched-chain amino acid (BCAA) metabolism and fatty acid diversity. Itaconate, therefore, alters the balance of CoA species in mitochondria through its impacts on TCA, amino acid, vitamin B12, and CoA metabolism. Our results highlight the diverse metabolic pathways regulated by itaconate and provide a roadmap to link these metabolites to potential downstream biological functions.
    Keywords:  TCA cycle metabolism; acetyl-CoA; branched-chain amino acids (BCAA); isotopic tracing; itaconate; itaconyl-CoA; methylmalonate; odd-chain fatty acids (OCFAs); propionyl-CoA; succinate; succinate dehydrogenase; vitamin B12
    DOI:  https://doi.org/10.3390/metabo11020117
  15. Blood. 2021 Mar 04. pii: blood.2020009063. [Epub ahead of print]
      The pathophysiology of sickle cell disease (SCD) is driven by chronic inflammation. We show that elevated cell-free DNA (cfDNA) in SCD patients is not just a prognostic biomarker but contributes to the pathological inflammation. Within the elevated cfDNA, SCD patients had significantly higher proportion of mitochondrial (cf-mtDNA) to nuclear cfDNA (cf-nDNA) compared to healthy controls. Additionally, mtDNA in patient samples showed significant disproportionately increased hypomethylation compared to healthy controls, that was further increased in crises when compared to steady-state. Using flow cytometry, structured illumination microscopy and electron microscopy, we showed that circulating SCD red blood cells abnormally retained their mitochondria, and thus likely to be the source of the elevated cf-mtDNA in SCD patients. Patient plasma containing high levels of cf-mtDNA triggered formation of neutrophil extracellular traps (NETs) that was substantially reduced by inhibition of TANK-binding kinase 1 (TBK1) implicating activation of the cGAS-STING pathway. cf-mtDNA is an erythrocytic-DAMP, highlighting an underappreciated role of mitochondria in sickle pathology. Clinicaltrials.gov identifiers: #NCT00081523, #NCT03049475, #NCT00047996.
    DOI:  https://doi.org/10.1182/blood.2020009063
  16. Circulation. 2021 Mar 05.
      Background: Neonatal mouse cardiomyocytes undergo a metabolic switch from glycolysis to oxidative phosphorylation, which results in a significant increase in reactive oxygen species (ROS) production that induces DNA damage. These cellular changes contribute to cardiomyocyte cell cycle exit and loss of the capacity for cardiac regeneration. The mechanisms that regulate this metabolic switch and the increase in ROS production have been relatively unexplored. Current evidence suggests that elevated ROS production in ischemic tissues occurs due to accumulation of the mitochondrial metabolite succinate during ischemia via succinate dehydrogenase (SDH), and this succinate is rapidly oxidized at reperfusion. Interestingly, mutations in SDH in familial cancer syndromes have been demonstrated to promote a metabolic shift into glycolytic metabolism, suggesting a potential role for SDH in regulating cellular metabolism. Whether succinate and SDH regulate cardiomyocyte cell cycle activity and the cardiac metabolic state remains unclear. Methods: Here, we investigated the role of succinate and succinate dehydrogenase (SDH) inhibition in regulation of postnatal cardiomyocyte cell cycle activity and heart regeneration. Results: Our results demonstrate that injection of succinate in neonatal mice results in inhibition of cardiomyocyte proliferation and regeneration. Our evidence also shows that inhibition of SDH by malonate treatment after birth extends the window of cardiomyocyte proliferation and regeneration in juvenile mice. Remarkably, extending malonate treatment to the adult mouse heart following myocardial infarction injury results in a robust regenerative response within 4 weeks following injury via promoting adult cardiomyocyte proliferation and revascularization. Our metabolite analysis following SDH inhibition by malonate induces dynamic changes in adult cardiac metabolism. Conclusions: Inhibition of SDH by malonate promotes adult cardiomyocyte proliferation, revascularization, and heart regeneration via metabolic reprogramming. These findings support a potentially important new therapeutic approach for human heart failure.
    Keywords:  heart regeneration; succinate dehydrogenase
    DOI:  https://doi.org/10.1161/CIRCULATIONAHA.120.049952
  17. Cell Death Differ. 2021 Mar 01.
      Optic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor β (Tcrβ) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1-/- thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function.
    DOI:  https://doi.org/10.1038/s41418-021-00747-6
  18. iScience. 2021 Feb 19. 24(2): 102119
      Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
    Keywords:  Cell Biology; Molecular Biology; Organizational Aspects of Cell Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102119
  19. J Biol Chem. 2021 Feb 24. pii: S0021-9258(21)00242-8. [Epub ahead of print] 100469
      Alterations in mitochondrial fission may contribute to the pathophysiology of several neurodegenerative diseases, including Alzheimer's disease (AD). However, we understand very little about the normal functions of fission, or how fission disruption may interact with AD-associated proteins to modulate pathogenesis. Here we show that loss of the central mitochondrial fission protein dynamin-related 1 (Drp1) in CA1 and other forebrain neurons markedly worsens the learning and memory of mice expressing mutant human amyloid-precursor protein (hAPP) in neurons. In cultured neurons, Drp1KO and hAPP converge to produce mitochondrial Ca2+ (mitoCa2+) overload, despite decreasing mitochondria-associated ER membranes (MAMs) and cytosolic Ca2+. This mitoCa2+ overload occurs independently of ATP levels. These findings reveal a potential mechanism by which mitochondrial fission protects against hAPP-driven pathology.
    Keywords:  Alzheimer’s disease; Drp1; amyloid precursor protein (APP); mitochondria; mitochondrial calcium; mitochondrial fission; neurodegeneration; neurodegenerative disease
    DOI:  https://doi.org/10.1016/j.jbc.2021.100469
  20. Nat Commun. 2021 03 02. 12(1): 1396
      Increasing numbers of protein interactions have been identified in high-throughput experiments, but only a small proportion have solved structures. Recently, sequence coevolution-based approaches have led to a breakthrough in predicting monomer protein structures and protein interaction interfaces. Here, we address the challenges of large-scale interaction prediction at residue resolution with a fast alignment concatenation method and a probabilistic score for the interaction of residues. Importantly, this method (EVcomplex2) is able to assess the likelihood of a protein interaction, as we show here applied to large-scale experimental datasets where the pairwise interactions are unknown. We predict 504 interactions de novo in the E. coli membrane proteome, including 243 that are newly discovered. While EVcomplex2 does not require available structures, coevolving residue pairs can be used to produce structural models of protein interactions, as done here for membrane complexes including the Flagellar Hook-Filament Junction and the Tol/Pal complex.
    DOI:  https://doi.org/10.1038/s41467-021-21636-z
  21. EBioMedicine. 2021 Feb 26. pii: S2352-3964(21)00037-2. [Epub ahead of print]65 103244
      Mitochondria play a vital role in cellular metabolism and are central mediator of intracellular signalling, cell differentiation, morphogenesis and demise. An increasingly higher number of pathologies is linked with mitochondrial dysfunction, which can arise from either genetic defects affecting core mitochondrial components or malfunctioning pathways impairing mitochondrial homeostasis. As such, mitochondria are considered an important target in several pathologies spanning from neoplastic to neurodegenerative diseases as well as metabolic syndromes. In this review we provide an overview of the state-of-the-art in mitochondrial pharmacology, focusing on the novel compounds that have been generated in the bid to correct mitochondrial aberrations. Our work aims to serve the scientific community working on translational medical science by highlighting the most promising pharmacological approaches to target mitochondrial dysfunction in disease.
    Keywords:  Mitochondria-targeted and untargeted agents; Mitochondrial diseases; Mitochondrial dysfunction in pathology
    DOI:  https://doi.org/10.1016/j.ebiom.2021.103244
  22. J Cardiovasc Magn Reson. 2021 Mar 04. 23(1): 18
       BACKGROUND: Myocardial fibrosis is an important prognostic factor in hypertrophic cardiomyopathy (HCM). However, the contribution from a wide spectrum of genetic mutations has not been well defined. We sought to investigate effect of sarcomere and mitochondria-related mutations on myocardial fibrosis in HCM.
    METHODS: In 133 HCM patients, comprehensive genetic analysis was performed in 82 nuclear DNA (33 sarcomere-associated genes, 5 phenocopy genes, and 44 nuclear genes linked to mitochondrial cardiomyopathy) and 37 mitochondrial DNA. In all patients, cardiovascular magnetic resonance (CMR) was performed, including 16-segmental thickness, late gadolinium enhancement (LGE), native and post-T1, extracellular volume fraction (ECV), and T2, along with echo-Doppler evaluations.
    RESULTS: Patients with sarcomere mutation (SM, n = 41) had higher LGE involved segment, % LGE mass, ECV and lower post-T1 compared to patients without SM (n = 92, all p < 0.05). When classified into, non-mutation (n = 67), only mitochondria-related mutation (MM, n = 24), only-SM (n = 36) and both SM and MM (n = 5) groups, only-SM group had higher ECV and LGE than the non-mutation group (all p < 0.05). In non-LGE-involved segments, ECV was significantly higher in patients with SM. Within non-SM group, patients with any sarcomere variants of uncertain significance had higher echocardiographic Doppler E/e' (p < 0.05) and tendency of higher LGE amount and ECV (p > 0.05). However, MM group did not have significantly higher ECV or LGE amount than non-mutation group.
    CONCLUSIONS: SMs are significantly related to increase in myocardial fibrosis. Although, some HCM patients had pathogenic MMs, it was not associated with an increase in myocardial fibrosis.
    Keywords:  Hypertrophic cardiomyopathy; Mitochondria; Myocardial fibrosis; Sarcomere gene mutation
    DOI:  https://doi.org/10.1186/s12968-021-00718-3
  23. iScience. 2021 Mar 19. 24(3): 102140
      Tobacco smoking is a risk factor for several human diseases. Conversely, smoking also reduces the prevalence of Parkinson's disease, whose hallmark is degeneration of substantia nigra dopaminergic neurons (DNs). We use C. elegans as a model to investigate whether tobacco-derived nicotine activates nicotinic acetylcholine receptors (nAChRs) to selectively protect DNs. Using this model, we demonstrate conserved functions of DN-expressed nAChRs. We find that DOP-2, a D3-receptor homolog; MCU-1, a mitochondrial calcium uniporter; PINK-1 (PTEN-induced kinase 1); and PDR-1 (Parkin) are required for nicotine-mediated protection of DNs. Together, our results support involvement of a calcium-modulated, mitochondrial stress-activated PINK1/Parkin-dependent pathway in nicotine-induced neuroprotection. This suggests that nicotine-selective protection of substantia nigra DNs is due to the confluence of two factors: first, their unique vulnerability to mitochondrial stress, which is mitigated by increased mitochondrial quality control due to PINK1 activation, and second, their specific expression of D3-receptors.
    Keywords:  Biological Sciences; Molecular Neuroscience; Neuroscience
    DOI:  https://doi.org/10.1016/j.isci.2021.102140
  24. iScience. 2021 Mar 19. 24(3): 102149
      Obesity is an important risk factor and a potential treatment target for hepatic steatosis. The maladaptation of hepatic mitochondrial flexibility plays a key role in the hepatic steatosis. Herein, we found that hepatocyte-like cells derived from human adipose stem cell of obese patients exhibited the characteristics of hepatic steatosis and accompanied with lower expression of the subunits of mitochondrial complex I and lower oxidative phosphorylation levels. The GSK3 inhibitor CHIR-99021 promoted the expression of NDUFB8, NDUFB9, the subunits of mitochondrial complex I, the basal oxygen consumption rate, and the fatty acid oxidation of the hepatocytes of obese patients by upregulating the expression of the transcription factor PGC-1α, TFAM, and NRF1 involved in mitochondrial biogenesis. Moreover, CHIR-99021 decreased the lipid droplets size and the triglyceride levels in hepatocytes of obese patients. The results demonstrate that GSK3 inhibition ameliorates hepatic steatosis by elevating the mitochondrial function in hepatocytes of obese patients.
    Keywords:  human metabolism; molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102149
  25. J Biol Chem. 2021 Feb 25. pii: S0021-9258(21)00248-9. [Epub ahead of print] 100474
      Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron-sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be post-translationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localised disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster, and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.
    Keywords:  Complex I; NADH:ubiquinone oxidoreductase; Yarrowia lipolytica; cryo‐electron microscopy; dimethyl-arginine; electron paramagnetic resonance (EPR); iron‐sulfur cluster
    DOI:  https://doi.org/10.1016/j.jbc.2021.100474
  26. Nature. 2021 Mar;591(7848): 163-164
      
    Keywords:  Careers; Institutions; Lab life
    DOI:  https://doi.org/10.1038/d41586-021-00532-y
  27. Gene Ther. 2021 Mar 04.
      Plants and other organisms, but not insects or vertebrates, express the auxiliary respiratory enzyme alternative oxidase (AOX) that bypasses mitochondrial respiratory complexes III and/or IV when impaired. Persistent expression of AOX from Ciona intestinalis in mammalian models has previously been shown to be effective in alleviating some metabolic stresses produced by respiratory chain inhibition while exacerbating others. This implies that chronic AOX expression may modify or disrupt metabolic signaling processes necessary to orchestrate adaptive remodeling, suggesting that its potential therapeutic use may be confined to acute pathologies, where a single course of treatment would suffice. One possible route for administering AOX transiently is AOX-encoding nucleic acid constructs. Here we demonstrate that AOX-encoding chemically-modified RNA (cmRNA), sequence-optimized for expression in mammalian cells, was able to support AOX expression in immortalized mouse embryonic fibroblasts (iMEFs), human lung carcinoma cells (A549) and primary mouse pulmonary arterial smooth muscle cells (PASMCs). AOX protein was detectable as early as 3 h after transfection, had a half-life of ~4 days and was catalytically active, thus supporting respiration and protecting against respiratory inhibition. Our data demonstrate that AOX-encoding cmRNA optimized for use in mammalian cells represents a viable route to investigate and possibly treat mitochondrial respiratory disorders.
    DOI:  https://doi.org/10.1038/s41434-021-00235-z
  28. PLoS Comput Biol. 2021 Mar 02. 17(3): e1008708
      Alternative splicing can expand the diversity of proteomes. Homologous mutually exclusive exons (MXEs) originate from the same ancestral exon and result in polypeptides with similar structural properties but altered sequence. Why would some genes switch homologous exons and what are their biological impact? Here, we analyse the extent of sequence, structural and functional variability in MXEs and report the first large scale, structure-based analysis of the biological impact of MXE events from different genomes. MXE-specific residues tend to map to single domains, are highly enriched in surface exposed residues and cluster at or near protein functional sites. Thus, MXE events are likely to maintain the protein fold, but alter specificity and selectivity of protein function. This comprehensive resource of MXE events and their annotations is available at: http://gene3d.biochem.ucl.ac.uk/mxemod/. These findings highlight how small, but significant changes at critical positions on a protein surface are exploited in evolution to alter function.
    DOI:  https://doi.org/10.1371/journal.pcbi.1008708
  29. Pharmaceutics. 2021 Feb 12. pii: 254. [Epub ahead of print]13(2):
      Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.
    Keywords:  antitumor agents; fluorescence lifetime imaging; medicinal chemistry; metabolic drug; mitochondrial carrier
    DOI:  https://doi.org/10.3390/pharmaceutics13020254
  30. Amino Acids. 2021 Mar 02.
      Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a moonlighting protein exhibiting distinct activities apart from its classical role in glycolysis. Regulation of its moonlighting functions and its subcellular localization may be dependent on its posttranslational modification (PTM). The latter include its phosphorylation, which is required for its role in intermembrane trafficking, synaptic transmission and cancer survival; nitrosylation, which is required for its function in apoptosis, heme metabolism and the immune response; acetylation which is necessary for its modulation of apoptotic gene regulation; and N-acetylglucosamine modification which may induce changes in GAPDH oligomeric structure. These findings suggest a structure function relationship between GAPDH posttranslational modification and its diverse moonlighting activities.
    Keywords:  Apoptosis; Glyceraldehyde-3-phosphate dehydrogenase; Heme; Moonlighting protein; Posttranslational modification
    DOI:  https://doi.org/10.1007/s00726-021-02959-z
  31. Nat Commun. 2021 Mar 05. 12(1): 1460
      Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.
    DOI:  https://doi.org/10.1038/s41467-021-21617-2