bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2021‒12‒05
fifty-three papers selected by
Catalina Vasilescu
University of Helsinki


  1. Clin Genet. 2021 Nov 29.
      IMMT gene codes for mitofilin, a mitochondrial inner membrane protein that regulates the morphology of mitochondrial cristae. The phenotype associated with mutations in this gene has not been yet established, but functional studies carried out show that its loss causes a mitochondrial alteration, both in the morphology of the mitochondrial crests and in their function. We present two cousins from an extended highly consanguineous family with developmental encephalopathy, hypotonia, nystagmus due to optic neuropathy. The likely pathogenic homozygous c.895A > G (p.Lys299Glu) variant in the IMMT gene co-segregates with the disease and associates altered mitochondrial cristae observed by electron microscopy.
    Keywords:  IMMT gene; developmental encephalopathy; mitochondrial disorder; mitofilin complexes; nystagmus; optic neuropathy
    DOI:  https://doi.org/10.1111/cge.14093
  2. Nat Rev Genet. 2021 Dec 02.
      Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
    DOI:  https://doi.org/10.1038/s41576-021-00432-x
  3. Open Biol. 2021 Dec;11(12): 210238
      Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
    Keywords:  ATP synthase; MICOS; Mgm1; Saccharomyces cerevisiae; cristae; mitochondrial lipids
    DOI:  https://doi.org/10.1098/rsob.210238
  4. Mol Cell. 2021 Nov 19. pii: S1097-2765(21)00954-0. [Epub ahead of print]
      Most mitochondrial proteins are translated in the cytosol and imported into mitochondria. Mutations in the mitochondrial protein import machinery cause human pathologies. However, a lack of suitable tools to measure protein uptake across the mitochondrial proteome has prevented the identification of specific proteins affected by import perturbation. Here, we introduce mePRODmt, a pulsed-SILAC based proteomics approach that includes a booster signal to increase the sensitivity for mitochondrial proteins selectively, enabling global dynamic analysis of endogenous mitochondrial protein uptake in cells. We applied mePRODmt to determine protein uptake kinetics and examined how inhibitors of mitochondrial import machineries affect protein uptake. Monitoring changes in translation and uptake upon mitochondrial membrane depolarization revealed that protein uptake was extensively modulated by the import and translation machineries via activation of the integrated stress response. Strikingly, uptake changes were not uniform, with subsets of proteins being unaffected or decreased due to changes in translation or import capacity.
    Keywords:  SILAC; TMT; disease; integrated stress response; mitochondria; protein translocation; proteomics; proteostasis; respiratory chain complexes; translation
    DOI:  https://doi.org/10.1016/j.molcel.2021.11.004
  5. Nucleic Acids Res. 2021 Nov 29. pii: gkab1179. [Epub ahead of print]
      Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.
    DOI:  https://doi.org/10.1093/nar/gkab1179
  6. Clin Neurol Neurosurg. 2021 Nov 20. pii: S0303-8467(21)00568-0. [Epub ahead of print]212 107039
      Isolated deficiency of complex II is a rare inborn error of metabolism, accounting for approximately 2% of mitochondrial diseases. Mitochondrial complex II deficiency is predominantly seen in cases with bi-allelic SDHA mutations. To our knowledge, only 11 patients and five pathogenic variants have been reported for the SDHB gene. Our patient had a severe clinical presentation with seizures and sepsis, and died at the age of 2 months. Muscle biopsy analysis was compatible with mitochondrial myopathy with complex II deficiency. The family was given a molecular diagnosis for their child 2 years after his death via a clinical exome test of a frozen muscle biopsy specimen and a novel homozygous missense variant c.592 A>G (p.Ser198Gly) in SDHB gene was detected by next-generation sequencing. Here, we present another patient with a novel homozygous SDHB variant causing severe complex II deficiency and early death.
    Keywords:  Mitochondrial complex II deficiency; Mitochondrial diseases; Next-Generation Sequencing; SDHB
    DOI:  https://doi.org/10.1016/j.clineuro.2021.107039
  7. Intern Med. 2021 Nov 27.
      Objective Although aerobic exercise tests on cycle ergometry have long been used for initial assessments of cases of suspected mitochondrial disease, the test parameters in patients with final diagnoses of other diseases via the widely used 15 W for 15 min exercise protocol have not been fully characterized. Methods and Patients We retrospectively reviewed all patients who underwent the test at our institution. We classified the patients with genetic diagnoses or those who met previously reported clinical criteria as having mitochondrial diseases and those with a final diagnosis of another disease as having other diseases. Results were available from 6 patients with mitochondrial disease and 15 with other diseases. Results During the test, elevated venous peak lactate above the upper normal limit of healthy controls at rest (19.2 mg/dL [2.13 mM]) was observed in 3 patients with mitochondrial diseases (50.0%) and 5 with other diseases (33.3%). In the group of patients with elevated venous peak lactate, a lactate-to-pyruvate ratio of >20 was observed in all 3 patients with mitochondrial disease but in only 1 of the 5 with other diseases. More than a 2-fold increase in venous lactate from baseline was observed in 4 patients with mitochondrial disease (66.7%) and 1 with another disease (6.7%). Conclusion Elevated venous peak lactate levels were observed in patients with final diagnoses of other diseases, even under a low 15-min workload at 15 W. The lactate-to-pyruvate ratio and increase in lactate level from baseline may add diagnostic value to venous peak lactate levels alone.
    Keywords:  Ergometer; Ergometry; Lactate; Lactic acid; Literature review; Mitochondria
    DOI:  https://doi.org/10.2169/internalmedicine.8629-21
  8. Commun Biol. 2021 Dec 02. 4(1): 1350
      Proteostasis is a challenge for cellular organisms, as all known protein synthesis machineries are error-prone. Here we show by cell fractionation and microscopy studies that misfolded proteins formed in the endoplasmic reticulum can become associated with and partly transported into mitochondria, resulting in impaired mitochondrial function. Blocking the endoplasmic reticulum-mitochondria encounter structure (ERMES), but not the mitochondrial sorting and assembly machinery (SAM) or the mitochondrial surveillance pathway components Msp1 and Vms1, abrogated mitochondrial sequestration of ER-misfolded proteins. We term this mitochondria-associated proteostatic mechanism for ER-misfolded proteins ERAMS (ER-associated mitochondrial sequestration). We testify to the relevance of this pathway by using mutant α-1-antitrypsin as an example of a human disease-related misfolded ER protein, and we hypothesize that ERAMS plays a role in pathological features such as mitochondrial dysfunction.
    DOI:  https://doi.org/10.1038/s42003-021-02873-w
  9. Diabetes Metab J. 2021 Nov;45(6): 853-865
      Tissues actively involved in energy metabolism are more likely to face metabolic challenges from bioenergetic substrates and are susceptible to mitochondrial dysfunction, leading to metabolic diseases. The mitochondria receive signals regarding the metabolic states in cells and transmit them to the nucleus or endoplasmic reticulum (ER) using calcium (Ca2+) for appropriate responses. Overflux of Ca2+ in the mitochondria or dysregulation of the signaling to the nucleus and ER could increase the incidence of metabolic diseases including insulin resistance and type 2 diabetes mellitus. Mitochondrial transcription factor A (Tfam) may regulate Ca2+ flux via changing the mitochondrial membrane potential and signals to other organelles such as the nucleus and ER. Since Tfam is involved in metabolic function in the mitochondria, here, we discuss the contribution of Tfam in coordinating mitochondria-ER activities for Ca2+ flux and describe the mechanisms by which Tfam affects mitochondrial Ca2+ flux in response to metabolic challenges.
    Keywords:  Calcium; Cell nucleus; Diabetes mellitus, type 2; Endoplasmic reticulum; Mitochondria; TFAM protein
    DOI:  https://doi.org/10.4093/dmj.2021.0138
  10. Circulation. 2021 Nov 30. 144(22): 1795-1817
      Nicotinamide adenine dinucleotide (NAD+) is a central metabolite involved in energy and redox homeostasis as well as in DNA repair and protein deacetylation reactions. Pharmacological or genetic inhibition of NAD+-degrading enzymes, external supplementation of NAD+ precursors, and transgenic overexpression of NAD+-generating enzymes have wide positive effects on metabolic health and age-associated diseases. NAD+ pools tend to decline with normal aging, obesity, and hypertension, which are all major risk factors for cardiovascular disease, and NAD+ replenishment extends healthspan, avoids metabolic syndrome, and reduces blood pressure in preclinical models. In addition, experimental elevation of NAD+ improves atherosclerosis, ischemic, diabetic, arrhythmogenic, hypertrophic, or dilated cardiomyopathies, as well as different modalities of heart failure. Here, we critically discuss cardiomyocyte-specific circuitries of NAD+ metabolism, comparatively evaluate distinct NAD+ precursors for their preclinical efficacy, and raise outstanding questions on the optimal design of clinical trials in which NAD+ replenishment or supraphysiological NAD+ elevations are assessed for the prevention or treatment of major cardiac diseases. We surmise that patients with hitherto intractable cardiac diseases such as heart failure with preserved ejection fraction may profit from the administration of NAD+ precursors. The development of such NAD+-centered treatments will rely on technological and conceptual progress on the fine regulation of NAD+ metabolism.
    Keywords:  NAD; cardiomyopathy; heart failure; human; nicotinamide; nicotinamide mononucleotide; obesity
    DOI:  https://doi.org/10.1161/CIRCULATIONAHA.121.056589
  11. Front Mol Biosci. 2021 ;8 767088
      Mitochondria are essential organelles involved in cellular energy production. The inner mitochondrial membrane protein stomatin-like protein 2 (SLP-2) is a member of the SPFH (stomatin, prohibitin, flotilin, and HflK/C) superfamily and binds to the mitochondrial glycerophospholipid cardiolipin, forming cardiolipin-enriched membrane domains to promote the assembly and/or stabilization of protein complexes involved in oxidative phosphorylation. In addition, human SLP-2 anchors a mitochondrial processing complex required for proteolytic regulation of proteins involved in mitochondrial dynamics and quality control. We now show that deletion of the gene encoding the Trypanosoma brucei homolog TbSlp2 has no effect on respiratory protein complex stability and mitochondrial functions under normal culture conditions and is dispensable for growth of T. brucei parasites. In addition, we demonstrate that TbSlp2 binds to the metalloprotease TbYme1 and together they form a large mitochondrial protein complex. The two proteins negatively regulate each other's expression levels by accelerating protein turnover. Furthermore, we show that TbYme1 plays a role in heat-stress resistance, as TbYme1 knock-out parasites displayed mitochondrial fragmentation and loss of viability when cultured at elevated temperatures. Unbiased interaction studies uncovered putative TbYme1 substrates, some of which were differentially affected by the absence of TbYme1. Our results support emerging evidence for the presence of mitochondrial quality control pathways in this ancient eukaryote.
    Keywords:  Yme1; cardiolipin; membrane proteins; mitochondria; mitochondrial stress response; prohibitin; stomatin-like protein 2; trypanosoma
    DOI:  https://doi.org/10.3389/fmolb.2021.767088
  12. Trends Neurosci. 2021 Nov 29. pii: S0166-2236(21)00214-9. [Epub ahead of print]
      Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.
    Keywords:  Parkinson’s disease; SARM1; Wallerian degeneration; axon degeneration; mitochondrial dysfunction; programmed axon death
    DOI:  https://doi.org/10.1016/j.tins.2021.10.014
  13. Brain. 2021 Nov 29. pii: awab426. [Epub ahead of print]
      Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases (MDs). With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (CI) induce isolated CI deficiency and Leigh syndrome (LS). This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA (nDNA)-encoded NDUFS4 gene, encoding the NADH: Ubiquinone oxidoreductase subunit S4 (NDUFS4) of CI induce "mitochondrial complex I deficiency, nuclear type 1" (MC1DN1) and LS in pediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the LS pathomechanism and intervention testing. Here, we review and discuss the role of CI and NDUFS4 mutations in human MD, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/LS pathomechanism and its therapeutic targeting.
    Keywords:  Leigh syndrome; intervention; mouse model; pathomechanism
    DOI:  https://doi.org/10.1093/brain/awab426
  14. Neuropediatrics. 2021 Dec 01.
      Variants in SURF1, encoding an assembly factor of mitochondrial respiratory chain complex IV, cause Leigh syndrome (LS) and Charcot-Marie-Tooth type 4K in children and young adolescents. Magnetic resonance imaging (MRI) appearance of enlarged nerve roots with postcontrastographic enhancement is a distinctive feature of hypertrophic neuropathy caused by onion-bulb formation and it has rarely been described in mitochondrial diseases (MDs). Spinal nerve roots abnormalities on MRI are novel findings in LS associated with variants in SURF1. Here we report detailed neuroradiological and neurophysiologic findings in a child with LS and demyelinating neuropathy SURF1-related. Our case underlines the potential contributive role of spinal neuroimaging together with neurophysiological examination to identify the full spectrum of patterns in MDs. It remains to elucidate if these observations remain peculiar of SURF1 variants or potentially detectable in other MDs with peripheral nervous system involvement.
    DOI:  https://doi.org/10.1055/s-0041-1739135
  15. Mol Cell Oncol. 2021 ;8(5): 1984162
      Autophagy is a central recycling process, and it plays a complex role in cancer. We discovered that when autophagy is blocked, cancer cells compensate by increasing mitochondrial-derived vesicles. However, there are many unanswered questions remaining, particularly in the context of the dual roles of autophagy in cancer.
    Keywords:  Autophagy; cancer; mitochondria; mitochondrial derived vesicles; mitophagy
    DOI:  https://doi.org/10.1080/23723556.2021.1984162
  16. J Genet Genomics. 2021 Nov 29. pii: S1673-8527(21)00358-1. [Epub ahead of print]
      Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Of the multiple signaling pathways that regulate metabolism, such as PI3K/AKT, mTOR, AMPK, and sirtuins, mammalian sirtuins also play unique roles in aging. By understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will focus on canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and oxidative stress, calorie restriction and disease.
    Keywords:  Metabolism and aging regulation; Mitochondrial sirtuins; SIRT3; SIRT4; SIRT5; age-related diseases
    DOI:  https://doi.org/10.1016/j.jgg.2021.11.005
  17. Mol Cell. 2021 Dec 02. pii: S1097-2765(21)00978-3. [Epub ahead of print]81(23): 4765-4767
      Schöller et al. (2021) discovered that METTL8, thought of as an mRNA modifier, is a tRNA-specific mitochondrial enzyme important for mitochondrial translation and function. Paradoxically, increased expression of METTL8 is associated with high respiratory rates in pancreatic cancers.
    DOI:  https://doi.org/10.1016/j.molcel.2021.11.009
  18. J Cell Sci. 2021 Dec 03. pii: jcs.253591. [Epub ahead of print]
      Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone -but not strong mitochondrial uncoupling by CCCP- rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.
    Keywords:  AMPK; Membrane-less organelles; Metformin; Mitochondria; Processing bodies; Smaug; Uqcrc1
    DOI:  https://doi.org/10.1242/jcs.253591
  19. DNA Cell Biol. 2021 Dec 01.
      Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
    Keywords:  mitochondria; mitochondrial dynamics; mitophagy; pain; peripheral neuropathy
    DOI:  https://doi.org/10.1089/dna.2021.0529
  20. Angew Chem Int Ed Engl. 2021 Dec 01.
      Mitochondrial function in cells declines with aging and with neurodegeneration, due in large part to accumulated mutations in mitochondrial DNA (mtDNA) that arise from deficient DNA repair. However, measuring this repair activity is challenging. Here we employ a molecular approach for visualizing mitochondrial base excision repair (BER) activity in situ by use of a fluorescent probe ( UBER ) that reacts rapidly with AP sites resulting from BER activity. Administering the probe to cultured cells revealed signals that were localized to mitochondria, enabling selective observation of mtDNA BER intermediates. The probe showed elevated DNA repair activity under oxidative stress, and responded to suppression of glycosylase activity. Furthermore, the probe illuminated the time lag between the initiation of oxidative stress and the initial step of BER. Absence of MTH1 in cells resulted in elevated demand for BER activity upon extended oxidative stress, while the absence of OGG1 activity limited glycosylation capacity.
    Keywords:  DNA damage and repair; dynamics; fluorescence probes; mitochondrial DNA
    DOI:  https://doi.org/10.1002/anie.202111829
  21. NPJ Genom Med. 2021 Dec 03. 6(1): 103
      Hundreds of LMNA variants have been associated with several distinct disease phenotypes. However, genotype-phenotype relationships remain largely undefined and the impact for most variants remains unknown. We performed a functional analysis for 178 variants across five structural domains using two different overexpression models. We found that lamin A aggregation is a major determinant for skeletal and cardiac laminopathies. An in vitro solubility assay shows that aggregation-prone variants in the immunoglobulin-like domain correlate with domain destabilization. Finally, we demonstrate that myopathic-associated LMNA variants show aggregation patterns in induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) in contrast to non-myopathic LMNA variants. Our data-driven approach (1) reveals that striated muscle laminopathies are predominantly protein misfolding diseases, (2) demonstrates an iPSC-CM experimental platform for characterizing laminopathic variants in human cardiomyocytes, and (3) supports a functional assay to aid in assessing pathogenicity for myopathic variants of uncertain significance.
    DOI:  https://doi.org/10.1038/s41525-021-00265-x
  22. Aging (Albany NY). 2021 Nov 28. 13(undefined):
      The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats (Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 years, a powerful mitochondrial structure are develop. By the age of 11 years, it become obvious that the mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny).
    Keywords:  aging; electron microscopy; mitochondria; naked mole-rat; neoteny
    DOI:  https://doi.org/10.18632/aging.203720
  23. Nat Commun. 2021 Dec 03. 12(1): 7056
      Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.
    DOI:  https://doi.org/10.1038/s41467-021-27153-3
  24. Mitochondrion. 2021 Nov 29. pii: S1567-7249(21)00167-7. [Epub ahead of print]
      Due to the rapid rise in the prevalence of chronic metabolic disease, more and more clinicians and basic medical researchers focus their eyesight on insulin resistance (IR), an early and central event of metabolic diseases. The occurrence and development of IR are primarily caused by excessive energy intake and reduced energy consumption. Liver is the central organ that controls glucose homeostasis, playing a considerable role in systemic IR. Decreased capacity of oxidative metabolism and mitochondrial dysfunction are being blamed as the direct reason for the development of IR. Mitochondrial Ca2+ plays a fundamental role in maintaining proper mitochondrial function and redox stability. The maintaining of mitochondrial Ca2+ homeostasis requires the cooperation of ion channels in the inner and outer membrane of mitochondria, such as mitochondrial calcium uniporter complex (MCUC) and voltage-dependent anion channels (VDACs). In addition, the crosstalk between the endoplasmic reticulum (ER), lysosome and plasma membrane with mitochondria is also significant for mitochondrial calcium homeostasis, which is responsible for an efficient network of cellular Ca2+ signaling. Here, we review the recent progression in the research about the regulation factors for mitochondrial Ca2+ and how the dysregulation of mitochondrial Ca2+ homeostasis is involved in the pathogenesis of hepatic IR, providing a new perspective for further exploring the role of ion in the onset and development of IR.
    Keywords:  Hepatic insulin resistance; Lysosomal calcium; Mitochondria-associated ER membranes; Mitochondrial calcium; Redox system
    DOI:  https://doi.org/10.1016/j.mito.2021.11.007
  25. Cell Death Differ. 2021 Nov 30.
      Autophagic decline is considered a hallmark of ageing. The activity of this intracytoplasmic degradation pathway decreases with age in many tissues and autophagy induction ameliorates ageing in many organisms, including mice. Autophagy is a critical protective pathway in neurons and ageing is the primary risk factor for common neurodegenerative diseases. Here, we describe that autophagosome biogenesis declines with age in mouse brains and that this correlates with increased expression of the SORBS3 gene (encoding vinexin) in older mouse and human brain tissue. We characterise vinexin as a negative regulator of autophagy. SORBS3 knockdown increases F-actin structures, which compete with YAP/TAZ for binding to their negative regulators, angiomotins, in the cytosol. This promotes YAP/TAZ translocation into the nucleus, thereby increasing YAP/TAZ transcriptional activity and autophagy. Our data therefore suggest brain autophagy decreases with age in mammals and that this is likely, in part, mediated by increasing levels of vinexin.
    DOI:  https://doi.org/10.1038/s41418-021-00903-y
  26. Angew Chem Int Ed Engl. 2021 Nov 30.
      Approaches for profiling protease substrates are critical for defining protease functions, but remain challenging tasks. Here we combine genetic code expansion, photocrosslinking and proteomics to identify substrates of the mitochondrial (mt) human caseinolytic protease P (hClpP). Site-specific incorporation of the diazirine-bearing amino acid DiazK into the inner proteolytic chamber of hClpP, followed by UV-irradiation of cells allows to covalently trap hClpP to substrate proteins and to substantiate hClpP's major involvement in maintaining overall mt homeostasis. In addition to confirming many of the previously annotated hClpP substrates, our approach adds a diverse set of new proteins to the hClpP interactome. Importantly, our workflow allows to identify substrate dynamics upon external cues in an unbiased manner. Identification of unique hClpP-substrate proteins upon induction of mt oxidative stress, suggests that hClpP counteracts oxidative stress by processing of proteins that are involved in respiratory chain complex synthesis and maturation as well as in catabolic pathways.
    Keywords:  Genetic code expansion; Proteomics; human caseinolytic protease P; photocrosslinking; protease profiling
    DOI:  https://doi.org/10.1002/anie.202111085
  27. Cell Metab. 2021 Nov 24. pii: S1550-4131(21)00531-3. [Epub ahead of print]
      Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.
    Keywords:  UCP1; cysteine; inflammation; metabolism; reactive oxygen species; sex differences
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.003
  28. Hum Genet. 2021 Dec 02.
      Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
    DOI:  https://doi.org/10.1007/s00439-021-02394-w
  29. Comput Struct Biotechnol J. 2021 ;19 5600-5612
      In mitochondria, metabolic processes require the trafficking of solutes and organic molecules, such as amino acids. This task is accomplished by the Mitochondrial Carrier Family members (also known as SLC25), among which the SLC25A29 is responsible for the translocation of basic amino acids. In this regard, nitric oxide levels originated by the arginine mitochondrial catabolism have been shown to strongly affect cancer cells' metabolic status. Furthermore, the metabolic disease saccharopinuria has been linked to a mitochondrial dysregulation caused by a toxic intermediate of the lysine catabolism. In both cases, a reduction of the activity of SLC25A29 has been shown to ameliorate these pathological conditions. However, no detailed structural data are available on SLC25A29. In the present work, molecular modelling, docking and dynamics simulations have been employed to analyse the structural determinants of ligands recognition by SLC25A29 in the c-state. Results confirm and reinforce earlier predictions that Asn73, Arg160 and Glu161, and Arg257 represent the ligand contact points I, II, and III, respectively, and that Arg160, Trp204 and Arg257 form a stable interaction, likely critical for ligand binding and translocation. These results are discussed in view of the experimental data available for SLC25A29 and other homologous carriers of the same family.
    Keywords:  Ligand recognition; Mitochondrial carrier of basic amino acids; Molecular docking; Molecular dynamics; SLC25A29
    DOI:  https://doi.org/10.1016/j.csbj.2021.10.007
  30. Am J Med Genet A. 2021 Dec 04.
      Nemaline Myopathy (NM) is a disorder of skeletal muscles caused by mutations in sarcomere proteins and characterized by accumulation of microscopic rod or thread-like structures (nemaline bodies) in skeletal muscles. Patients diagnosed with both NM and infantile cardiomyopathy are very rare. A male infant presented, within the first few hours of life, with severe dilated cardiomyopathy, biventricular dysfunction and left ventricular noncompaction. A muscle biopsy on the 8th day of life from the right sternocleidomastoid muscle identified nemaline rods. Whole exome sequencing identified a c.1288 delT (homozygous pathogenic variant) in the CAP2 gene (NM_006366), yielding a CAP2 protein (NP_006357.1) with a p.C430fs. Both parents were heterozygous for the same variant but have no history of heart or muscle disease. Analysis of patient derived fibroblasts and cardiomyocytes derived from induced pluripotent stem cells confirmed the p.C430fs mutation (pathogenic variant), which appears to cause loss of both CAP2 protein and mRNA. The CAP2 gene encodes cyclase associated protein 2, an actin monomer binding and filament depolymerizing protein and CAP2 knockout mice develop severe dilated cardiomyopathy and muscle weakness. The patient underwent a heart transplant at 1 year of age. Heart tissue explanted at that time also showed nemaline rods and additionally disintegration of the myofibrillar structure. Other extra cardiac concerns include mild hypotonia, atrophic and widened scarring. This is the first description of a patient presenting with nemaline myopathy associated with a pathogenic variant of CAP2.
    Keywords:  SRF pathway; SRV2; actin dynamics; cardiac fibrosis; cofilin; sarcomere
    DOI:  https://doi.org/10.1002/ajmg.a.62590
  31. ACS Chem Neurosci. 2021 Nov 30.
      Mitophagy, the selective degradation of mitochondria by autophagy, involved in important physiological processes and defects in pathways has been reported in pathological conditions, such as neurodegeneration. Thus, mitophagy is an interesting target for drug discovery programs. In this investigation, we used robust phenotypic assay to screen a set of 50 small heterocyclic compounds to identify inducers of mitophagy. We identified two compounds, VP07 and JAR1.39, that induce Parkin-dependent mitophagy. Based on structure-activity relationship studies, we proposed the ability of the compounds to act as light chain 3 (LC3) interactors, similar to cardiolipin or ceramide, triggering mitophagy via Pink1/Parkin. Finally, we show promising therapeutic applicability in a cellular model of Parkinson's disease.
    Keywords:  Parkinson’s disease; drug discovery; mitophagy; mitophagy inducers; phenotypic assay
    DOI:  https://doi.org/10.1021/acschemneuro.1c00529
  32. Eur J Paediatr Neurol. 2021 Nov 20. pii: S1090-3798(21)00199-9. [Epub ahead of print]36 30-36
      OBJECTIVES: To clarify the diagnostic utility and the cost-effectiveness of whole-exome sequencing (WES) as a routine early-diagnostic tool in children with progressive neurological disorders.METHODS: Patients with infantile-onset severe neurological diseases or childhood-onset progressive neurological disorders were prospectively recruited to this WES study, in the pediatric neurology clinic at Helsinki University Hospital during 2016-2018. A total of 48 patients underwent a singleton WES. A control group of 49 children underwent traditional diagnostic examinations and were retrospectively collected from the hospital records. Their use of health care services, related to the diagnostic process, was gathered. Incremental cost-effectiveness ratio (ICER) per additional diagnosis was calculated from the health care provider perspective. Bootstrapping methods were used to estimate the uncertainty of cost-effectiveness outcomes.
    RESULTS: WES provided a better diagnostic yield (38%) than diagnostic pathway that did not prioritize WES in early diagnosis (25%). WES outperformed other diagnostic paths especially when made early, within one year of first admission (44%). Cost-effectiveness in our results are conservative, affected by WES costs during 2016-18.
    CONCLUSIONS: WES is an efficient and cost-effective diagnostic tool that should be prioritized in early diagnostic path of children with progressive neurological disorders. The progressively decreasing price of the test improves cost-effectiveness further.
    Keywords:  Cost-effectiveness; Encephalopathy; WES; Whole-exome sequencing
    DOI:  https://doi.org/10.1016/j.ejpn.2021.11.006
  33. Methods Mol Biol. 2021 Nov 30.
      Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) create an unlimited cell source for basic and translational cardiac research. Obtaining hiPSC-CM culture as a single-cell, monolayer or three-dimensional clusters for downstream applications can be challenging. Thus, it is critical to develop replating strategies for hiPSC-CMs by evaluating different enzymatic or nonenzymatic reagents for dissociation and seeding on different coating materials. To reseed hiPSC-CMs with high viability and at structures desirable for the downstream applications, here we defined optimized protocols to dissociate hiPSC-CMs by using collagenase A&B, Collagenase II, TrypLE, and EDTA and reseeding on various matrix materials including fibronectin, laminin, imatrix, Matrigel, and Geltrex. By the replating methods described here, a single cell or cluster-containing hiPSC-CM cultures can be generated effectively.
    Keywords:  Cardiac differentiation; Cardiomyocytes; Cell dissociation; Human induced pluripotent stem cells; Replating cardiomyocytes
    DOI:  https://doi.org/10.1007/7651_2021_450
  34. Brain. 2021 Nov 29. 144(10): 3239-3250
      Giant axonal neuropathy (GAN) is an ultra-rare autosomal recessive, progressive neurodegenerative disease with early childhood onset that presents as a prominent sensorimotor neuropathy and commonly progresses to affect both the PNS and CNS. The disease is caused by biallelic mutations in the GAN gene located on 16q23.2, leading to loss of functional gigaxonin, a substrate specific ubiquitin ligase adapter protein necessary for the regulation of intermediate filament turnover. Here, we report on cross-sectional data from the first study visit of a prospectively collected natural history study of 45 individuals, age range 3-21 years with genetically confirmed GAN to describe and cross-correlate baseline clinical and functional cohort characteristics. We review causative variants distributed throughout the GAN gene in this cohort and identify a recurrent founder mutation in individuals with GAN of Mexican descent as well as cases of recurrent uniparental isodisomy. Through cross-correlational analysis of measures of strength, motor function and electrophysiological markers of disease severity, we identified the Motor Function Measure 32 to have the strongest correlation across measures and age in individuals with GAN. We analysed the Motor Function Measure 32 scores as they correspond to age and ambulatory status. Importantly, we identified and characterized a subcohort of individuals with a milder form of GAN and with a presentation similar to Charcot-Marie-Tooth disease. Such a clinical presentation is distinct from the classic presentation of GAN, and we demonstrate how the two groups diverge in performance on the Motor Function Measure 32 and other functional motor scales. We further present data on the first systematic clinical analysis of autonomic impairment in GAN as performed on a subset of the natural history cohort. Our cohort of individuals with genetically confirmed GAN is the largest reported to date and highlights the clinical heterogeneity and the unique phenotypic and functional characteristics of GAN in relation to disease state. The present work is designed to serve as a foundation for a prospective natural history study and functions in concert with the ongoing gene therapy trial for children with GAN.
    Keywords:  Motor Function Measure 32 (MFM-32); autonomic function; giant axonal neuropathy; natural history; neuromuscular
    DOI:  https://doi.org/10.1093/brain/awab179
  35. Stem Cell Reports. 2021 Nov 23. pii: S2213-6711(21)00585-3. [Epub ahead of print]
      Efficient translation of human induced pluripotent stem cells (hiPSCs) requires scalable cell manufacturing strategies for optimal self-renewal and functional differentiation. Traditional manual cell culture is variable and labor intensive, posing challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient- and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation and generated functional neurons, cardiomyocytes, and hepatocytes. To validate our approach, we compared robotic and manual cell culture operations and performed comprehensive molecular and cellular characterizations (e.g., single-cell transcriptomics, mass cytometry, metabolism, electrophysiology) to benchmark industrial-scale cell culture operations toward building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy.
    Keywords:  CEPT cocktail; biomanufacturing; cell differentiation; high-throughput; iPS cell; mass cytometry; robotic cell culture; single-cell transcriptomics; standardization
    DOI:  https://doi.org/10.1016/j.stemcr.2021.11.004
  36. Br J Pharmacol. 2021 Dec 03.
      BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease (NAFLD) affects over 25% of the general population and lacks an effective treatment. Recent evidence implicates disrupted mitochondrial calcium homeostasis in the pathogenesis of hepatic steatosis.EXPERIMENTAL APPROACH: In this study, mitochondrial calcium uniporter (MCU) was inhibited through classical genetic approaches, viral vectors or small molecule inhibitors in vivo to study its role in hepatic steatosis induced by HFD. In vitro, MCU was overexpressed or inhibited to change mitochondrial calcium homeostasis; endoplasmic reticulum-mitochondrial linker was adopted to increase mitochondria-associated membranes (MAM); and MICU1-EF hand mutant was used to decrease the sensitivity of mitochondrial calcium uptake 1 (MICU1) to calcium and block MCU channel.
    KEY RESULTS: Here we found that inhibition of liver MCU by AAV virus and classical genetic approaches can alleviate HFD-induced liver steatosis. MCU regulates mitochondrial calcium homeostasis and affects lipid accumulation in liver cells. In addition, a HFD in mice enlarged the MAM. The high calcium environment produced by MAM invalidated the function of MICU1 and led to persistent open of MCU channels. Therefore, it caused mitochondrial calcium overload and liver fat deposition. Inhibition of MAM and MCU alleviated HFD-induced hepatic steatosis. MCU inhibitors (Ru360 and mitoxantrone) can block MCU channels and reduce mitochondrial calcium levels. Intraperitoneal injection of MCU inhibitors (0.01 μM/kg bodyweight) can alleviate HFD-induced hepatic steatosis.
    CONCLUSION AND IMPLICATIONS: These findings provide molecular insights into the way HFD disrupts mitochondrial calcium homeostasis and identified MCU as a promising drug target for the treatment of hepatic steatosis.
    Keywords:  Calcium homeostasis; MCU; MCU inhibitor; NAFLD
    DOI:  https://doi.org/10.1111/bph.15767
  37. Am J Physiol Heart Circ Physiol. 2021 Dec 03.
      Various skeletal muscle abnormalities are known to occur in heart failure (HF), and are closely associated with exercise intolerance. Particularly, abnormal energy metabolism caused by mitochondrial dysfunction in skeletal muscle is a cause of decreased endurance exercise capacity. However, to date, no specific drug treatment has been established for the skeletal muscle abnormalities and exercise intolerance occurring in HF patients. Sodium-glucose transporter 2 (SGLT2) inhibitors promote glucose excretion by suppressing glucose reabsorption in the renal tubules, which has a hypoglycemic effect independent of insulin secretion. Recently, large clinical trials have demonstrated that treatment with SGLT2 inhibitors suppresses cardiovascular events in patients who have HF with systolic dysfunction. Mechanisms of the therapeutic effects of SGLT2 inhibitors for HF have been suggested to be diuretic, suppression of neurohumoral factor activation, renal protection, and improvement of myocardial metabolism, but has not been clarified to date. SGLT2 inhibitors are known to increase blood ketone bodies. This suggests that they may improve the abnormal skeletal muscle metabolism in HF, i.e., improve fatty acid metabolism, suppress glycolysis, and utilize ketone bodies in mitochondrial energy production. Ultimately, they may improve aerobic metabolism in skeletal muscle, and suppress anaerobic metabolism and improve aerobic exercise capacity at the level of the anaerobic threshold. The potential actions of such SGLT2 inhibitors explain their effectiveness in HF, and may be candidates for new drug treatments aimed at improving exercise intolerance. In this review, we outlined the effects of SGLT2 inhibitors on skeletal muscle metabolism, with a particular focus on ketone metabolism.
    Keywords:  cardiac disease; exercise intolerance; mitochondrial dysfunction; muscle atrophy; sodium-glucose transporter 2 inhibitor
    DOI:  https://doi.org/10.1152/ajpheart.00100.2021
  38. Mol Genet Metab. 2021 Nov 14. pii: S1096-7192(21)00822-2. [Epub ahead of print]
      There is a limited understanding of system-level clinical outcomes and interventions associated with single large-scale mitochondrial DNA deletion syndromes (SLSMDS). Additionally, no research exists that describes patient reported outcomes (PROs) of children with SLSMDS. A global and observational registry was established to understand the multi-systemic course of SLSMDS and track clinical outcomes. The development and design of the registry is described. Demographic characteristics, history and diagnoses, and system level prevalence of problems and interventions are reported for 42 children. System level problems and interventions include information on the following body systems: audiology, cardiac, endocrine, gastrointestinal (including pancreatic and hepatobiliary system), hematological, metabolic, neurological (including autonomic, mobility, & learning), ophthalmic, psychiatric, renal, and respiratory. Results emphasize the need of patient registries and suggest that the diagnostic odyssey and burden of disease for children with SLSMDS is significant. System-level findings may help families and clinical providers with diagnosis, prognostication, and treatment. A multidisciplinary team of clinical experts with a central coordinating specialist for children with SLSMDS is recommended.
    Keywords:  Kearns-Sayre syndrome; Pearson syndrome; Rare disease registry; Single large-scale mitochondrial deletion syndromes; mtDNA
    DOI:  https://doi.org/10.1016/j.ymgme.2021.11.004
  39. Life Sci Alliance. 2022 Feb;pii: e202101287. [Epub ahead of print]5(2):
      The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1-PRKN pathway leading to mitophagy. We provide a detailed cell biological characterization of a benzosulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition after mitochondrial depolarization. This includes enhancement of TOMM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson disease patients carrying loss of function PRKN mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1-independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U2OS cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover.
    DOI:  https://doi.org/10.26508/lsa.202101287
  40. Nat Commun. 2021 Dec 02. 12(1): 7042
      Despite the increasing global burden of neurological disorders, there is a lack of effective diagnostic and therapeutic biomarkers. Proteins are often dysregulated in disease and have a strong genetic component. Here, we carry out a protein quantitative trait locus analysis of 184 neurologically-relevant proteins, using whole genome sequencing data from two isolated population-based cohorts (N = 2893). In doing so, we elucidate the genetic landscape of the circulating proteome and its connection to neurological disorders. We detect 214 independently-associated variants for 107 proteins, the majority of which (76%) are cis-acting, including 114 variants that have not been previously identified. Using two-sample Mendelian randomisation, we identify causal associations between serum CD33 and Alzheimer's disease, GPNMB and Parkinson's disease, and MSR1 and schizophrenia, describing their clinical potential and highlighting drug repurposing opportunities.
    DOI:  https://doi.org/10.1038/s41467-021-27387-1
  41. Cell Death Dis. 2021 Nov 29. 12(12): 1115
      Age-related loss of skeletal muscle mass and function, termed sarcopenia, could impair the quality of life in the elderly. The mechanisms involved in skeletal muscle aging are intricate and largely unknown. However, more and more evidence demonstrated that mitochondrial dysfunction and apoptosis also play an important role in skeletal muscle aging. Recent studies have shown that mitochondrial calcium uniporter (MCU)-mediated mitochondrial calcium affects skeletal muscle mass and function by affecting mitochondrial function. During aging, we observed downregulated expression of mitochondrial calcium uptake family member3 (MICU3) in skeletal muscle, a regulator of MCU, which resulted in a significant reduction in mitochondrial calcium uptake. However, the role of MICU3 in skeletal muscle aging remains poorly understood. Therefore, we investigated the effect of MICU3 on the skeletal muscle of aged mice and senescent C2C12 cells induced by D-gal. Downregulation of MICU3 was associated with decreased myogenesis but increased oxidative stress and apoptosis. Reconstitution of MICU3 enhanced antioxidants, prevented the accumulation of mitochondrial ROS, decreased apoptosis, and increased myogenesis. These findings indicate that MICU3 might promote mitochondrial Ca2+ homeostasis and function, attenuate oxidative stress and apoptosis, and restore skeletal muscle mass and function. Therefore, MICU3 may be a potential therapeutic target in skeletal muscle aging.
    DOI:  https://doi.org/10.1038/s41419-021-04400-5
  42. Elife. 2021 Dec 02. pii: e71656. [Epub ahead of print]10
      RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair and mRNA transport. Here we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex, and provide a structural framework for understanding its functions in cellular RNA metabolism.
    Keywords:  biochemistry; chemical biology; human; molecular biophysics; structural biology
    DOI:  https://doi.org/10.7554/eLife.71656
  43. Hum Mutat. 2021 Dec 02.
      Reference population databases are an essential tool in variant and gene interpretation. Their use guides the identification of pathogenic variants amidst the sea of benign variation present in every human genome, and supports the discovery of new disease-gene relationships. The Genome Aggregation Database (gnomAD) is currently the largest and most widely used publicly available collection of population variation from harmonized sequencing data. The data is available through the online gnomAD browser (https://gnomad.broadinstitute.org/) that enables rapid and intuitive variant analysis. This review provides guidance on the content of the gnomAD browser, and its usage for variant and gene interpretation. We introduce key features including allele frequency, per-base expression levels, constraint scores, and variant co-occurrence, alongside guidance on how to use these in analysis, with a focus on the interpretation of candidate variants and novel genes in rare disease. This article is protected by copyright. All rights reserved.
    Keywords:  allele frequency; constraint; database; gnomAD; reference population; variant interpretation
    DOI:  https://doi.org/10.1002/humu.24309
  44. STAR Protoc. 2021 Dec 17. 2(4): 100952
      Cell-Specific Mitochondria Affinity Purification (CS-MAP) enables isolation and purification of intact mitochondria from individual cell types of Caenorhabditis elegans. The approach is based on the cell-specific expression of a recombinant hemagglutinin (HA)-tag fused to the TOMM-20 protein that decorates the surface of mitochondria, thereby allowing their immunomagnetic purification. This protocol describes the CS-MAP procedure performed on large populations of animals. The purified mitochondria are suitable for subsequent nucleic acid, protein, and functional analyses. For complete details on the use and execution of this protocol, please refer to Ahier et al. (2018, 2021).
    Keywords:  Cell Biology; Cell separation/fractionation; Metabolism; Model Organisms; Molecular Biology; Protein Biochemistry; Protein expression and purification
    DOI:  https://doi.org/10.1016/j.xpro.2021.100952
  45. J Phys Condens Matter. 2021 Nov 30.
      Uncovering the link between mitochondrial morphology, dynamics, positioning and function is challenging. Mitochondria are very flexible organelles that are subject to tension and compression within cells. Recent findings highlighted the importance of these mechanical aspects in the regulation of mitochondria dynamics, arising the question on which are the processes and mechanisms involved in their shape remodeling. In this work we explored in detail the morphological changes and spatio- temporal fluctuations of these organelles in living Xenopus laevis melanophores, a well- characterized cellular model. We developed an automatic method for the classification of mitochondria shapes based on the analysis of the curvature of the contour shape from confocal microscopy images. A persistence length of 2.1 μm was measured, quantifying, for the first time, the bending plasticity of mitochondria in their cellular environment. The shape evolution at the single organelle level was followed during a few minutes revealing that mitochondria can bend and unbend in the seconds timescale. Furthermore, the inspection of confocal movies simultaneously registering fluorescent mitochondria and microtubules suggests that the cytoskeleton network architecture and dynamics play a significant role in mitochondria shape remodeling and fluctuations. For instance changes from sinuous to elongated organelles related to transitions from confined behavior to fast directed motion along microtubule tracks were observed.
    Keywords:  cytoskeleton; mechanical properties; mitochondria morphology; molecular motors
    DOI:  https://doi.org/10.1088/1361-648X/ac3e9c
  46. Nat Metab. 2021 Nov 29.
      Carbohydrate can be converted into fat by de novo lipogenesis, a process upregulated in fatty liver disease. Chemically, de novo lipogenesis involves polymerization and reduction of acetyl-CoA, using NADPH as the electron donor. The feedstocks used to generate acetyl-CoA and NADPH in lipogenic tissues remain, however, unclear. Here we show using stable isotope tracing in mice that de novo lipogenesis in adipose is supported by glucose and its catabolism via the pentose phosphate pathway to make NADPH. The liver, in contrast, derives acetyl-CoA for lipogenesis from acetate and lactate, and NADPH from folate-mediated serine catabolism. Such NADPH generation involves the cytosolic serine pathway in liver running in the opposite direction to that observed in most tissues and tumours, with NADPH made by the SHMT1-MTHFD1-ALDH1L1 reaction sequence. SHMT inhibition decreases hepatic lipogenesis. Thus, liver folate metabolism is distinctively wired to support cytosolic NADPH production and lipogenesis. More generally, while the same enzymes are involved in fat synthesis in liver and adipose, different substrates are used, opening the door to tissue-specific pharmacological interventions.
    DOI:  https://doi.org/10.1038/s42255-021-00487-4
  47. J Cell Sci. 2021 Dec 02. pii: jcs.259254. [Epub ahead of print]
      Endoplasmic reticulum stress (ERS) occurs when cellular demand for protein folding exceeds the capacity of the organelle. Adaptation and cell survival in response to ERS requires a critical contribution by mitochondria and peroxisomes. During ERS response, mitochondrial respiration increases to ameliorate reactive oxygen species (ROS) accumulation; we now show in yeast that peroxisome abundance also increases to promote an adaptive response. In pox1▵ cells, defective in peroxisomal ß oxidation of fatty acids, respiratory response to ERS is impaired, and ROS accrues. However, respiratory response to ERS is rescued, and ROS production is mitigated in pox1▵ cells by overexpression of Mpc1, the mitochondrial pyruvate carrier that provides another source of acetyl CoA to fuel the TCA cycle and oxidative phosphorylation. Using proteomics, select mitochondrial proteins were identified that undergo upregulation by ERS to remodel respiratory machinery. Several peroxisome-based proteins were also increased, corroborating the peroxisomal role in ERS adaptation. Finally, ERS stimulates assembly of respiratory complexes into higher order supercomplexes, underlying increased electron transfer efficiency. Our results highlight peroxisomal and mitochondrial support for ERS adaptation to favor cell survival.
    Keywords:  Endoplasmic reticulum; Mitochondria; Stress survival
    DOI:  https://doi.org/10.1242/jcs.259254
  48. J Clin Transl Sci. 2021 ;5(1): e177
      Rapid whole genome sequencing (rapid WGS) is a powerful diagnostic tool that is becoming increasingly practical for widespread clinical use. However, protocols for its use are challenging to implement. A significant obstacle to clinical adoption is that laboratory certification requires an initial research development phase, which is constrained by regulations from returning results. Regulations preventing return of results have ethical implications in cases which might impact patient outcomes. Here, we describe our experience with the development of a rapid WGS research protocol, that balanced the requirements for laboratory-validated test development with the ethical needs of clinically relevant return of results.
    DOI:  https://doi.org/10.1017/cts.2021.833
  49. Trends Cell Biol. 2021 Nov 26. pii: S0962-8924(21)00226-9. [Epub ahead of print]
      Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
    Keywords:  CRISPR; microproteins; noncanonical ORFs; ribosome profiling; short ORFs; translation
    DOI:  https://doi.org/10.1016/j.tcb.2021.10.010