bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2022–09–11
23 papers selected by
Catalina Vasilescu, University of Helsinki



  1. iScience. 2022 Sep 16. 25(9): 104920
      The human brain consumes five orders of magnitude more energy than the sun by unit of mass and time. This staggering bioenergetic cost serves mostly synaptic transmission and actin cytoskeleton dynamics. The peak of both brain bioenergetic demands and the age of onset for neurodevelopmental disorders is approximately 5 years of age. This correlation suggests that defects in the machinery that provides cellular energy would be causative and/or consequence of neurodevelopmental disorders. We explore this hypothesis from the perspective of the machinery required for the synthesis of the electron transport chain, an ATP-producing and NADH-consuming enzymatic cascade. The electron transport chain is constituted by nuclear- and mitochondrial-genome-encoded subunits. These subunits are synthesized by the 80S and the 55S ribosomes, which are segregated to the cytoplasm and the mitochondrial matrix, correspondingly. Mitochondrial protein synthesis by the 55S ribosome is the rate-limiting step in the synthesis of electron transport chain components, suggesting that mitochondrial protein synthesis is a bottleneck for tissues with high bionergetic demands. We discuss genetic defects in the human nuclear and mitochondrial genomes that affect these protein synthesis machineries and cause a phenotypic spectrum spanning autism spectrum disorders to neurodegeneration during neurodevelopment. We propose that dysregulated mitochondrial protein synthesis is a chief, yet understudied, causative mechanism of neurodevelopmental and behavioral disorders.
    Keywords:  Biological Sciences; Cell Biology; Neuroscience
    DOI:  https://doi.org/10.1016/j.isci.2022.104920
  2. iScience. 2022 Sep 16. 25(9): 104923
      Although it is reported that mitochondria-localized nuclear transcription factors (TFs) regulate mitochondrial processes such as apoptosis and mitochondrial transcription/respiration, the functions and mechanisms of mitochondrial dynamics regulated by mitochondria-localized nuclear TFs are yet to be fully characterized. Here, we identify STAT6 as a mitochondrial protein that is localized in the outer membrane of mitochondria (OMM). STAT6 in OMM inhibits mitochondrial fusion by blocking MFN2 dimerization. This implies that STAT6 has a critical role in mitochondrial dynamics. Moreover, mitochondrial accumulation of STAT6 in response to hypoxic conditions reveals that STAT6 is a regulator of mitochondrial processes including fusion/fission mechanisms.
    Keywords:  Biological sciences; Molecular biology; Molecular interaction; Natural sciences
    DOI:  https://doi.org/10.1016/j.isci.2022.104923
  3. J Cell Biol. 2022 Oct 03. pii: e202205104. [Epub ahead of print]221(10):
      Mitochondria are dynamic organelles that play essential roles in cell growth and survival. Processes of fission and fusion are critical for the distribution, segregation, and maintenance of mitochondria and their genomes (mtDNA). While recent work has revealed the significance of mitochondrial organization for mtDNA maintenance, the impact of mtDNA perturbations on mitochondrial dynamics remains less understood. Here, we develop a tool to induce mitochondria-specific DNA damage using a mitochondrial-targeted base modifying bacterial toxin, DarT. Following damage, we observe dynamic reorganization of mitochondrial networks, likely driven by mitochondrial dysfunction. Changes in the organization are associated with the loss of mtDNA, independent of mitophagy. Unexpectedly, perturbation to exonuclease function of mtDNA replicative polymerase, Mip1, results in rapid loss of mtDNA. Our data suggest that, under damage, partitioning of defective mtDNA and organelle are de-coupled, with emphasis on mitochondrial segregation independent of its DNA. Together, our work underscores the importance of genome maintenance on mitochondrial function, which can act as a modulator of organelle organization and segregation.
    DOI:  https://doi.org/10.1083/jcb.202205104
  4. Nutrients. 2022 Aug 31. pii: 3605. [Epub ahead of print]14(17):
      The mitochondrial malate aspartate shuttle system (MAS) maintains the cytosolic NAD+/NADH redox balance, thereby sustaining cytosolic redox-dependent pathways, such as glycolysis and serine biosynthesis. Human disease has been associated with defects in four MAS-proteins (encoded by MDH1, MDH2, GOT2, SLC25A12) sharing a neurological/epileptic phenotype, as well as citrin deficiency (SLC25A13) with a complex hepatopathic-neuropsychiatric phenotype. Ketogenic diets (KD) are high-fat/low-carbohydrate diets, which decrease glycolysis thus bypassing the mentioned defects. The same holds for mitochondrial pyruvate carrier (MPC) 1 deficiency, which also presents neurological deficits. We here describe 40 (18 previously unreported) subjects with MAS-/MPC1-defects (32 neurological phenotypes, eight citrin deficiency), describe and discuss their phenotypes and genotypes (presenting 12 novel variants), and the efficacy of KD. Of 13 MAS/MPC1-individuals with a neurological phenotype treated with KD, 11 experienced benefits-mainly a striking effect against seizures. Two individuals with citrin deficiency deceased before the correct diagnosis was established, presumably due to high-carbohydrate treatment. Six citrin-deficient individuals received a carbohydrate-restricted/fat-enriched diet and showed normalisation of laboratory values/hepatopathy as well as age-adequate thriving. We conclude that patients with MAS-/MPC1-defects are amenable to dietary intervention and that early (genetic) diagnosis is key for initiation of proper treatment and can even be lifesaving.
    Keywords:  AGC1; Citrullinemia; aspartate glutamate carrier 1 deficiency; citrin deficiency; epilepsy; hepatopathy; mitochondrial disease; modified Atkins diet; serine; treatment
    DOI:  https://doi.org/10.3390/nu14173605
  5. J Biol Chem. 2022 Sep 05. pii: S0021-9258(22)00908-5. [Epub ahead of print] 102465
      Mitochondria harbor the bacteria-inherited iron-sulfur cluster assembly (ISC) machinery to generate [2Fe-2S] and [4Fe-4S] proteins. In yeast, assembly of [4Fe-4S] proteins specifically involves the ISC proteins Isa1, Isa2, Iba57, Bol3, and Nfu1. Functional defects in their human equivalents cause the multiple mitochondrial dysfunction syndromes (MMDS), severe disorders with a broad clinical spectrum. The bacterial Iba57 ancestor YgfZ was described to require tetrahydrofolate (THF) for its function in the maturation of selected [4Fe-4S] proteins. Both YgfZ and Iba57 are structurally related to an enzyme family catalyzing THF-dependent one-carbon transfer reactions including GcvT of the glycine cleavage system. On this basis, a universally conserved folate requirement in ISC-dependent [4Fe-4S] protein biogenesis was proposed. To test this idea for mitochondrial Iba57, we performed genetic and biochemical studies in S. cerevisiae, and we solved the crystal structure of Iba57 from the thermophilic fungus Chaetomium thermophilum. We provide three lines of evidence for the THF independence of the Iba57-catalyzed [4Fe-4S] protein assembly pathway. First, yeast mutants lacking folate show no defect in mitochondrial [4Fe-4S] protein maturation. Second, the 3D structure of Iba57 lacks many of the side chain contacts to THF as defined in GcvT, and the THF binding pocket is constricted. Third, mutations in conserved Iba57 residues that are essential for THF-dependent catalysis in GcvT do not impair Iba57 function in vivo, in contrast to an exchange of the invariant, surface-exposed cysteine residue. We conclude that mitochondrial Iba57, despite structural similarities to both YgfZ and THF-binding proteins, does not utilize folate for its function.
    Keywords:  Iron-sulfur protein; crystallography; folate; iron-sulfur cluster assembly; mitochondria; mitochondrial disease
    DOI:  https://doi.org/10.1016/j.jbc.2022.102465
  6. Rev Neurosci. 2022 Sep 06.
      In recent years, the role of mitochondrial dynamics in neurodegenerative diseases has becoming increasingly important. More and more evidences have shown that in pathological conditions, abnormal mitochondrial divisions, especially Drp1-Fis1-mediated divisions, play an important role in the occurrence and development of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, glaucoma, and other neurodegenerative diseases. This review highlights several new mechanisms of physiological fission of mitochondria and the difference/connection of physiological/pathological mitochondrial fission. In addition, we described the relationship between abnormal mitochondrial dynamics and neurodegenerative diseases in detail and emphatically summarized its detection indicators in basic experiments, trying to provide references for further mechanism exploration and therapeutic targets.
    Keywords:  Drp1; Fis1; mitochondrial dynamics; neurodegenerative diseases; pathological fission; physiological fission
    DOI:  https://doi.org/10.1515/revneuro-2022-0056
  7. Biochim Biophys Acta Bioenerg. 2022 Sep 02. pii: S0005-2728(22)00384-X. [Epub ahead of print] 148914
      Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This "non-conventional" MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.
    Keywords:  Mitochondrial dynamics; Mitochondrial permeability transition; Non-conventional mitochondrial permeability transition; Permeability transition pore
    DOI:  https://doi.org/10.1016/j.bbabio.2022.148914
  8. Cell Metab. 2022 Sep 06. pii: S1550-4131(22)00354-0. [Epub ahead of print]34(9): 1231-1233
      In this issue of Cell Metabolism, Xue et al. propose that the mitochondrial calcium uniporter (MCU) binds uncoupling protein 1 (UCP1) via the MCU regulator (EMRE) to form a protein complex that the authors term the "thermoporter." Through gain- and loss-of-function experiments, the authors infer that the thermoporter promotes calcium influx into the mitochondrial matrix to enhance NADH production, which supports thermogenesis in brown adipose tissue (BAT).
    DOI:  https://doi.org/10.1016/j.cmet.2022.08.011
  9. Int J Mol Sci. 2022 Aug 24. pii: 9572. [Epub ahead of print]23(17):
      Mitochonic Acid 5 (MA-5) enhances mitochondrial ATP production, restores fibroblasts from mitochondrial disease patients and extends the lifespan of the disease model "Mitomouse". Additionally, MA-5 interacts with mitofilin and modulates the mitochondrial inner membrane organizing system (MINOS) in mammalian cultured cells. Here, we used the nematode Caenorhabditis elegans to investigate whether MA-5 improves the Duchenne muscular dystrophy (DMD) model. Firstly, we confirmed the efficient penetration of MA-5 in the mitochondria of C. elegans. MA-5 also alleviated symptoms such as movement decline, muscular tone, mitochondrial fragmentation and Ca2+ accumulation of the DMD model. To assess the effect of MA-5 on mitochondria perturbation, we employed a low concentration of rotenone with or without MA-5. MA-5 significantly suppressed rotenone-induced mitochondria reactive oxygen species (ROS) increase, mitochondrial network fragmentation and nuclear destruction in body wall muscles as well as endogenous ATP levels decline. In addition, MA-5 suppressed rotenone-induced degeneration of dopaminergic cephalic (CEP) neurons seen in the Parkinson's disease (PD) model. Furthermore, the application of MA-5 reduced mitochondrial swelling due to the immt-1 null mutation. These results indicate that MA-5 has broad mitochondrial homing and MINOS stabilizing activity in metazoans and may be a therapeutic agent for these by ameliorating mitochondrial dysfunction in DMD and PD.
    Keywords:  MA-5; Parkinson’s disease; mitochondrial calcium; mitochondrial fragmentation; muscular dystrophy; rotenone
    DOI:  https://doi.org/10.3390/ijms23179572
  10. Brain. 2022 Sep 08. pii: awac325. [Epub ahead of print]
      Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data does not exclude a possible association between the MAPT gene and Parkinson's disease, it provides strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.
    Keywords:  GWAS; KANSL1; KAT8; Parkinson’s disease; mitophagy
    DOI:  https://doi.org/10.1093/brain/awac325
  11. J Clin Endocrinol Metab. 2022 Sep 08. pii: dgac528. [Epub ahead of print]
       CONTEXT: Premature ovarian insufficiency (POI) is a common form of female infertility that most often presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimise co-morbidity and improve health outcomes.
    OBJECTIVE: To determine the genetic cause of premature ovarian insufficiency (POI), intellectual disability, neutropenia and cataracts.
    METHODS: We performed whole exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq and quantitative proteomics, as well as clinical update of previously reported patients with variants in the CaseinoLytic Peptidase B (CLPB) gene.
    RESULTS: We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts and neutropenia that is often fatal in childhood, however, there is likely a reporting bias towards severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common post-pubertal ailment.
    CONCLUSIONS: A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of post-pubertal females with CLPB deficiency. Patients with CLPB deficiency should be referred to paediatric gynaecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimise associated co-morbidities.
    Keywords:  CLPB; genetics; infertility; mitochondria; neutropenia; premature ovarian insufficiency; primary mitochondrial disease
    DOI:  https://doi.org/10.1210/clinem/dgac528
  12. Mol Genet Metab Rep. 2022 Dec;33 100912
      Biallelic deletions extending into the ATPase family AAA-domain containing protein 3A (ATAD3A) gene lead to infantile lethality with severe pontocerebellar hypoplasia (PCH). However, only 12 such cases have been reported worldwide to date, and the genotype-phenotype correlations are not well understood. We describe cases associated with the same novel biallelic deletions of the ATAD3A and ATAD3B/3A regions in Japanese siblings with severe spinal cord hypoplasia and multiple malformations, including PCH, leading to neonatal death. The ATAD3A protein is essential for normal interaction between mitochondria and endoplasmic reticulum and is important for mitochondrial biosynthesis. The cases were evaluated using whole-genome sequencing for genetic diagnosis of mitochondrial disease. Spinal cord lesions associated with biallelic compound heterozygous deletion extending into the ATAD3A gene have not been reported. In addition, the ATAD3A deletion was 19 base pairs long, which is short compared with those reported previously. This deletion introduced a frameshift, resulting in a premature termination codon, and was expected to be a null allele. The pathological findings of the atrophic spinal cord showed gliosis and tissue destruction of the gray and white matter. We describe spinal cord lesions as a new central nervous system phenotype associated with a biallelic compound heterozygous deletion extending into the ATAD3A gene. Biallelic ATAD3A deletions should be considered in cases of mitochondrial disease with spinal cord hypoplasia and PCH.
    Keywords:  ATAD3; ATAD3A, ATPase family AAA-domain containing protein 3A; ATAD3B, ATPase family AAA-domain containing protein 3B; ATAD3C, ATPase family AAA-domain containing protein 3C; Apgar, an appearance, score, grimace, activity and respiration; Biallelic deletion; IUGR, intrauterine growth restriction; MRI, magnetic resonance imaging; Neonate; PCH, pontocerebellar hypoplasia; PCR, polymerase chain reaction; RARS2, arginyl-tRNA synthetase 2, mitochondrial; SLC25A46, solute carrier family 25 member 46; SNVs, single nucleotide variants; Spinal cord hypoplasia; bp, base pairs; mtDNA, mitochondrial DNA
    DOI:  https://doi.org/10.1016/j.ymgmr.2022.100912
  13. Am J Med Genet A. 2022 Sep 06.
      Stroke causes significant disability and is a common cause of death worldwide. Previous studies have estimated that 1%-5% of stroke is attributable to monogenic etiologies. We set out to assess the utility of clinical exome sequencing (ES) in the evaluation of stroke. We retrospectively analyzed 124 individuals who received ES at the Baylor Genetics reference lab between 2012 and 2021 who had stroke as a major part of their reported phenotype. Ages ranged from 10 days to 69 years. 8.9% of the cohort received a diagnosis, including 25% of infants less than 1 year old; an additional 10.5% of the cohort received a probable diagnosis. We identified several syndromes that predispose to stroke such as COL4A1-related brain small vessel disease, homocystinuria caused by CBS mutation, POLG-related disorders, TTC19-linked mitochondrial disease, and RNASEH2A associated Aicardi-Goutieres syndrome. We also observed pathogenic variants in NSD1, PKHD1, HRAS, and ATP13A2, which are genes rarely associated with stroke. Although stroke is a complex phenotype with varying pathologies and risk factors, these results show that use of exome sequencing can be highly relevant in stroke, especially for those presenting <1 year of age.
    Keywords:  exome sequencing; genetic diagnosis; rare diseases; stroke
    DOI:  https://doi.org/10.1002/ajmg.a.62967
  14. J Hum Genet. 2022 Sep 05.
       PURPOSE: To describe a novel DNA2 variant contributing to defects in mtDNA maintenance and mtDNA depletion syndrome (MDS), and the clinical and histological findings associated with this variation.
    METHODS: Herein, we describe the case of a patient who presented with hearing loss and myopathy, given the family history of similar findings in the father, was evaluated by sequencing of the deafness gene panel, mitochondrial genome, and the exome. Furthermore, tissue staining, mtDNA copy number detection, mtDNA sequencing, and long-range polymerase chain reaction tests were also conducted on the muscle biopsy specimen. In vitro experiments, including analyses of the mtDNA copy number; levels of ATP, ATPase, and reactive oxygen species (ROS); and the membrane potential, were performed.
    RESULTS: The DNA2 heterozygous truncating variant c. 2368C > T (p.Q790X) was identified and verified as the cause of an mtDNA copy number decrement in both functional experiments and muscle tissue analyses. These changes were accompanied by reductions in ATP, ATPase, and ROS levels.
    CONCLUSION: The DNA2 variant was a likely cause of MDS in this patient. These findings expand the mutational spectrum of MDS and improve our understanding of the functions of DNA2 by revealing its novel role in mtDNA maintenance.
    DOI:  https://doi.org/10.1038/s10038-022-01075-4
  15. Cell Metab. 2022 Aug 30. pii: S1550-4131(22)00353-9. [Epub ahead of print]
      Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.
    Keywords:  CD36; EXT1; aging; beige fat; brown adipose tissue; cell-free mitochondria; fatty acids; heparan sulfate; horizontal mitochondria transfer; intercellular mitochondria transfer; lipids; macrophage; mitochondria; obesity; palmitate; white adipose tissue
    DOI:  https://doi.org/10.1016/j.cmet.2022.08.010
  16. Sci China Life Sci. 2022 Sep 02.
      Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
    Keywords:  aging; intervention; mechanism
    DOI:  https://doi.org/10.1007/s11427-022-2161-3
  17. Int J Mol Sci. 2022 Aug 29. pii: 9817. [Epub ahead of print]23(17):
      Limb-girdle muscular dystrophies (LGMD) are clinically and genetically heterogenous presentations displaying predominantly proximal muscle weakness due to the loss of skeletal muscle fibers. Beta-sarcoglycanopathy (LGMDR4) results from biallelic molecular defects in SGCB and features pediatric onset with limb-girdle involvement, often complicated by respiratory and heart dysfunction. Here we describe a patient who presented at the age of 12 years reporting high creatine kinase levels and onset of cramps after strenuous exercise. Instrumental investigations, including a muscle biopsy, pointed towards a diagnosis of beta-sarcoglycanopathy. NGS panel sequencing identified two variants in the SGCB gene, one of which (c.243+1548T&gt;C) was found to promote the inclusion of a pseudoexon between exons 2 and 3 in the SGCB transcript. Interestingly, we detected the same genotype in a previously reported LGMDR4 patient, deceased more than twenty years ago, who had escaped molecular diagnosis so far. After the delivery of morpholino oligomers targeting the pseudoexon in patient-specific induced pluripotent stem cells, we observed the correction of the physiological splicing and partial restoration of protein levels. Our findings prompt the analysis of the c.243+1548T&gt;C variant in suspected LGMDR4 patients, especially those harbouring monoallelic SGCB variants, and provide a further example of the efficacy of antisense technology for the correction of molecular defects resulting in splicing abnormalities.
    Keywords:  LGMD; SGCB; beta-sarcoglycan; morpholino
    DOI:  https://doi.org/10.3390/ijms23179817
  18. Free Radic Biol Med. 2022 Sep 02. pii: S0891-5849(22)00566-4. [Epub ahead of print]
      Osteoarthritis (OA) is an age-related disorder and an important cause of disability that is characterized by a senescence-associated secretory phenotype and matrix degradation leading to a gradual loss of articular cartilage integrity. Mitochondria, as widespread organelles, are involved in regulation of complex biological processes such as energy synthesis and cell metabolism, which also have bidirectional communication with the nucleus to help maintain cellular homeostasis and regulate adaptation to a broad range of stressors. In light of the evidence that OA is strongly associated with mitochondrial dysfunction. In addition, mitochondria are considered to be the culprits of cell senescence, and mitochondrial function changes during ageing are considered to have a controlling role in cell fate. Mitochondrial dysfunction is also observed in age-related OA, however, the internal mechanism by which mitochondrial function changes with ageing to lead to the development of OA has not been elucidated. In this study, we found that the expression of Lon protease 1 (LONP1), a mitochondrial protease, was decreased in human OA cartilage and in ageing rat chondrocytes. Furthermore, LONP1 knockdown accelerated the progression and severity of osteoarthritis, which was associated with aspects of mitochondrial dysfunction including oxidative stress, metabolic changes and mitophagy, leading to downstream MAPK pathway activation. Antioxidant therapy with resveratrol suppressed oxidative stress and MAPK pathway activation induced by LONP1 knockdown to mitigate OA progression. Therefore, our findings demonstrate that LONP1 is a central regulator of mitochondrial function in chondrocytes and reveal that downregulation of LONP1 with ageing contributes to osteoarthritis.
    Keywords:  Ageing; LONP1; Mitochondria; Osteoarthritis
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2022.08.038
  19. iScience. 2022 Sep 16. 25(9): 104941
      Numerous studies have established the involvement of lysosomal and mitochondrial dysfunction in the pathogenesis of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Building on our previous studies of the neurodegenerative lysosomal lipidosis Niemann-Pick C1 (NPC1), we have unexpectedly discovered that activation of the mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) leads to the correction of the lysosomal storage phenotype in patient cells from multiple lysosomal storage disorders including NPC1. Using small compound activators specific for TRAP1, we find that activation of this chaperone leads to a generalized restoration of lysosomal and mitochondrial health. Mechanistically, we show that this process includes inhibition of oxidative phosphorylation and reduction of oxidative stress, which results in activation of AMPK and ultimately stimulates lysosome recycling. Thus, TRAP1 participates in lysosomal-mitochondrial crosstalk to maintain cellular homeostasis and could represent a potential therapeutic target for multiple disorders.
    Keywords:  Cell biology; Cellular neuroscience; Neuroscience
    DOI:  https://doi.org/10.1016/j.isci.2022.104941
  20. Elife. 2022 Sep 08. pii: e79348. [Epub ahead of print]11
      Pleiotropy and genetic correlation are widespread features in GWAS, but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.
    Keywords:  genetics; genomics; human
    DOI:  https://doi.org/10.7554/eLife.79348
  21. Front Immunol. 2022 ;13 934444
      Neutrophils are the most abundant leukocyte in human blood. They are critical for fighting infections and are involved in inflammatory diseases. Mitochondria are indispensable for eukaryotic cells, as they control the biochemical processes of respiration and energy production. Mitochondria in neutrophils have been underestimated since glycolysis is a major metabolic pathway for fuel production in neutrophils. However, several studies have shown that mitochondria are greatly involved in multiple neutrophil functions as well as neutrophil-related diseases. In this review, we focus on how mitochondrial components, metabolism, and related genes regulate neutrophil functions and relevant diseases.
    Keywords:  NETosis; adhesion; migration; mitochondria; neutrophils; respiratory burst
    DOI:  https://doi.org/10.3389/fimmu.2022.934444
  22. Nat Commun. 2022 Sep 08. 13(1): 5278
      Polygenic risk scores (PRS) have been successfully developed for the prediction of human diseases and complex traits in the past years. For drug response prediction in randomized clinical trials, a common practice is to apply PRS built from a disease genome-wide association study (GWAS) directly to a corresponding pharmacogenomics (PGx) setting. Here, we show that such an approach relies on stringent assumptions about the prognostic and predictive effects of the selected genetic variants. We propose a shift from disease PRS to PGx PRS approaches by simultaneously modeling both the prognostic and predictive effects and further make this shift possible by developing a series of PRS-PGx methods, including a novel Bayesian regression approach (PRS-PGx-Bayes). Simulation studies show that PRS-PGx methods generally outperform the disease PRS methods and PRS-PGx-Bayes is superior to all other PRS-PGx methods. We further apply the PRS-PGx methods to PGx GWAS data from a large cardiovascular randomized clinical trial (IMPROVE-IT) to predict treatment related LDL cholesterol reduction. The results demonstrate substantial improvement of PRS-PGx-Bayes in both prediction accuracy and the capability of capturing the treatment-specific predictive effects while compared with the disease PRS approaches.
    DOI:  https://doi.org/10.1038/s41467-022-32407-9