bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2024‒10‒27
33 papers selected by
Catalina Vasilescu, Helmholz Munich



  1. Sci Rep. 2024 Oct 24. 14(1): 25161
      Variants in mitochondrial genomes (mtDNA) can cause various neurological and mitochondrial diseases such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS). Given the 16 kb length of mtDNA, continuous sequencing is feasible using long-read sequencing (LRS). Herein, we aimed to show a simple and accessible method for comprehensive mtDNA sequencing with potential diagnostic applications for mitochondrial diseases using the compact and affordable LRS flow cell "Flongle." Whole mtDNA amplification (WMA) was performed using genomic DNA samples derived from four patients with mitochondrial diseases, followed by LRS using Flongle. We compared these results to those obtained using Cas9 enrichment. Additionally, the accuracy of heteroplasmy rates was assessed by incorporating mtDNA variants at equimolar levels. Finally, mtDNA from 19 patients with Parkinson's disease (PD) was sequenced using Flongle to identify disease risk-associated variants. mtDNA variants were detected in all four patients with mitochondrial diseases, with results comparable to those obtained from Cas9 enrichment. Heteroplasmy levels were accurately detected (r2 > 0.99) via WMA using Flongle. A reported variant was identified in three patients with PD. In conclusion, Flongle can simplify the traditionally cumbersome and expensive mtDNA sequencing process, offering a streamlined and accessible approach to diagnosing mitochondrial diseases.
    Keywords:  Long-read DNA sequencing; Mitochondrial disease; Targeted sequencing
    DOI:  https://doi.org/10.1038/s41598-024-75749-8
  2. Protein Sci. 2024 Nov;33(11): e5190
      Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.
    Keywords:  Alphafold; GRPEL1; GRPEL2; co‐chaperone; cysteines; interactions; mitochondria; mtHSP70; nucleotide exchange factor
    DOI:  https://doi.org/10.1002/pro.5190
  3. Nat Cell Biol. 2024 Oct 21.
      Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
    DOI:  https://doi.org/10.1038/s41556-024-01527-3
  4. J Vis Exp. 2024 Oct 04.
      Mitochondrial function, a cornerstone of cellular energy production, is critical for maintaining metabolic homeostasis. Its dysfunction in skeletal muscle is linked to prevalent metabolic disorders (e.g., diabetes and obesity), muscular dystrophies, and sarcopenia. While there are many techniques to evaluate mitochondrial content and morphology, the hallmark method to assess mitochondrial function is the measurement of mitochondrial oxidative phosphorylation (OXPHOS) by respirometry. Quantification of mitochondrial OXPHOS provides insight into the efficiency of mitochondrial oxidative energy production and cellular bioenergetics. A high-resolution respirometer provides highly sensitive, robust measurements of mitochondrial OXPHOS in permeabilized muscle fibers by measuring real-time changes in mitochondrial oxygen consumption rate. The use of permeabilized muscle fibers, as opposed to isolated mitochondria, preserves mitochondrial networks, maintains mitochondrial membrane integrity, and ultimately allows for more physiologically relevant measurements. This system also allows for the measurement of fuel preference and metabolic flexibility - dynamic aspects of muscle energy metabolism. Here, we provide a comprehensive guide for mitochondrial OXPHOS measurements in human and mouse skeletal muscle fibers using a high-resolution respirometer. Skeletal muscle groups are composed of different fiber types that vary in their mitochondrial fuel preference and bioenergetics. Using a high-resolution respirometer, we describe methods for evaluating both aerobic glycolytic and fatty acid substrates to assess fuel preference and metabolic flexibility in a fiber-type-dependent manner. The protocol is versatile and applicable to both human and rodent muscle fibers. The goal is to enhance the reproducibility and accuracy of mitochondrial function assessments, which will improve our understanding of an organelle important to muscle health.
    DOI:  https://doi.org/10.3791/66834
  5. EMBO J. 2024 Oct 24.
      Senescent cells play a causative role in many diseases, and their elimination is a promising therapeutic strategy. Here, through a genome-wide CRISPR/Cas9 screen, we identify the gene PPIF, encoding the mitochondrial protein cyclophilin D (CypD), as a novel senolytic target. Cyclophilin D promotes the transient opening of the mitochondrial permeability transition pore (mPTP), which serves as a failsafe mechanism for calcium efflux. We show that senescent cells exhibit a high frequency of transient CypD/mPTP opening events, known as 'flickering'. Inhibition of CypD using genetic or pharmacologic tools, including cyclosporin A, leads to the toxic accumulation of mitochondrial Ca2+ and the death of senescent cells. Genetic or pharmacological inhibition of NCLX, another mitochondrial calcium efflux channel, also leads to senolysis, while inhibition of the main Ca2+ influx channel, MCU, prevents senolysis induced by CypD inhibition. We conclude that senescent cells are highly vulnerable to elevated mitochondrial Ca2+ ions, and that transient CypD/mPTP opening is a critical adaptation mechanism for the survival of senescent cells.
    Keywords:  Cellular Senescence; Cyclophilin D; Mitochondria; Senolytic Therapy; mPTP Flickering
    DOI:  https://doi.org/10.1038/s44318-024-00259-2
  6. Epigenomes. 2024 Oct 09. pii: 38. [Epub ahead of print]8(4):
      BACKGROUND/OBJECTIVES: One-carbon metabolism is a critical pathway for epigenetic mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular, methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and replication of mtDNA and, when altered, can contribute to the development of human illnesses. However, no study until now has demonstrated an association between circulating biomarkers of one-carbon metabolism and D-loop methylation levels.METHODS: In the study presented herein, we searched for associations between circulating one-carbon metabolism biomarkers, including folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA obtained from the peripheral blood of 94 elderly voluntary subjects.
    RESULTS: We observed a positive correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82). Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared to those with normal vitamin B12 levels (p = 0.04).
    CONCLUSIONS: This is the first study suggesting an association between vitamin B12 circulating levels and mtDNA methylation in human subjects. Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in human diseases, a deeper understanding of their interaction could inspire novel interventions with beneficial effects for human health.
    Keywords:  DNA methylation; mitochondrial D-loop; mitochondrial epigenetics; one-carbon metabolism; vitamin B12
    DOI:  https://doi.org/10.3390/epigenomes8040038
  7. Nat Commun. 2024 Oct 19. 15(1): 8997
      Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
    DOI:  https://doi.org/10.1038/s41467-024-53093-9
  8. Am J Physiol Endocrinol Metab. 2024 Oct 23.
      Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements to skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptions that are seen with exercise. Exercise-induced mitochondrial adaptations that dynamics have been implicated in are: 1) Increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes. 2) Morphological changes to the 3D tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Further, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains poorly understood. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.
    Keywords:  Exercise; Mitochondrial Dynamics; Skeletal Muscle
    DOI:  https://doi.org/10.1152/ajpendo.00311.2024
  9. Circ Res. 2024 Oct 25. 135(10): 1018-1020
      
    Keywords:  Editorials; diet, high-fat; heart failure; metabolism; mitochondria, heart; myocytes, cardiac
    DOI:  https://doi.org/10.1161/CIRCRESAHA.124.325501
  10. Ageing Res Rev. 2024 Oct 19. pii: S1568-1637(24)00367-2. [Epub ahead of print]102 102549
      Mitophagy is the intracellular recycling system that disposes damaged/inefficient mitochondria and allows biogenesis of new organelles to ensure mitochondrial quality is optimized. Dysfunctional mitophagy has been implicated in human aging and diseases. Multiple evolutionarily selected, redundant mechanisms of mitophagy have been identified, but their specific roles in human health and their potential exploitation as therapeutic targets are unclear. Recently, the characterization of the endosomal-lysosomal system has revealed additional mechanisms of mitophagy and mitochondrial quality control that operate via the production of mitochondria-derived vesicles (MDVs). Circulating MDVs can be isolated and characterized to provide an unprecedented opportunity to study this type of mitochondrial recycling in vivo and to relate it to human physiology and pathology. Defining the role of MDVs in human physiology, pathology, and aging is hampered by the lack of standardized methods to isolate, validate, and characterize these vesicles. Hence, some basic questions about MDVs remain unanswered. While MDVs are generated directly through the extrusion of mitochondrial membranes within the cell, a set of circulating extracellular vesicles leaking from the endosomal-lysosomal system and containing mitochondrial portions have also been identified and warrant investigation. Preliminary research indicates that MDV generation serves multiple biological roles and contributes to restoring cell homeostasis. However, studies have shown that MDVs may also be involved in pathological conditions. Therefore, further research is warranted to establish when/whether MDVs are supporting disease progression and/or are extracting damaged mitochondrial components to alleviate cellular oxidative burden and restore redox homeoastasis. This information will be relevant for exploiting these vesicles for therapeutic purpose. Herein, we provide an overview of preclinical and clinical studies on MDVs in aging and associated conditions and discuss the interplay between MDVs and some of the hallmarks of aging (mitophagy, inflammation, and proteostasis). We also outline open questions on MDV research that should be prioritized by future investigations.
    Keywords:  Exosomes; Extracellular vesicles; Inflammaging; Mitochondrial DNA; Mitochondrial quality control; Mitophagy
    DOI:  https://doi.org/10.1016/j.arr.2024.102549
  11. EMBO J. 2024 Oct 21.
      The mevalonate pathway produces essential lipid metabolites such as cholesterol. Although this pathway is negatively regulated by metabolic intermediates, little is known of the metabolites that positively regulate its activity. We found that the amino acid glutamine is required to activate the mevalonate pathway. Glutamine starvation inhibited cholesterol synthesis and blocked transcription of the mevalonate pathway-even in the presence of glutamine derivatives such as ammonia and α-ketoglutarate. We pinpointed this glutamine-dependent effect to a loss in the ER-to-Golgi trafficking of SCAP that licenses the activation of SREBP2, the major transcriptional regulator of cholesterol synthesis. Both enforced Golgi-to-ER retro-translocation and the expression of a nuclear SREBP2 rescued mevalonate pathway activity during glutamine starvation. In a cell model of impaired mitochondrial respiration in which glutamine uptake is enhanced, SREBP2 activation and cellular cholesterol were increased. Thus, the mevalonate pathway senses and is activated by glutamine at a previously uncharacterized step, and the modulation of glutamine synthesis may be a strategy to regulate cholesterol levels in pathophysiological conditions.
    Keywords:  Cholesterol; HMGCR; MFN2; Nutrient Sensing; SREBP2
    DOI:  https://doi.org/10.1038/s44318-024-00269-0
  12. Nanoscale. 2024 Oct 23.
      Mitochondria play important roles in the maintenance of cellular health. In cancer, these dynamic organelles undergo significant changes in terms of membrane hyperpolarization, altered metabolic functions, fusion-fission balance, and several other parameters. These alterations promote cancer growth, proliferation and spread, and the eventual development of metastatic disease and therapeutic resistance. Thus, routing therapeutics to the mitochondrial compartments can be one of the most promising methodologies for tackling such changes to achieve cancer control. Over the last decade, targeted cancer medicine has experienced tremendous growth, enabling the targeting of mitochondria for greater therapeutic specificity. Here, we demonstrate a feasibility method to specifically target the mitochondria of prostate cancer cells. We achieve such dual targeting by utilizing two functionalized polymers and constructing a single blended nanoparticle (NP). Such a targeting strategy was developed utilizing a polymeric platform that differed in terms of the length of the amphiphilic portions, the linker between the hydrophobic portions, and the attached targeting moieties. In doing this, we demonstrate prostate cancer specific mitochondrial delivery of a chemotherapeutic prodrug to create repair-resistant adducts within mitochondrial DNA promoting cellular death. This article documents the synthetic strategy, optimization of blended NPs for cell specific mitochondria targeting, and the utility of the proof-of-concept design was demonstrated using a combination of analytical and in vitro studies.
    DOI:  https://doi.org/10.1039/d4nr01450b
  13. Metabolites. 2024 Oct 16. pii: 553. [Epub ahead of print]14(10):
      Background: Mitochondria are considered the powerhouse of cells, and skeletal muscle cells are no exception. However, information regarding muscle mitochondria from different species is limited. Methods: Different muscles from cattle, pigs and chickens were analyzed for mitochondrial DNA (mtDNA), protein and oxygen consumption. Results: Bovine oxidative muscle mitochondria contain greater mtDNA (p < 0.05), protein (succinate dehydrogenase, SDHA, p < 0.01; citrate synthase, CS, p < 0.01; complex I, CI, p < 0.05), and oxygen consumption (p < 0.01) than their glycolytic counterpart. Likewise, porcine oxidative muscle contains greater mtDNA (p < 0.01), mitochondrial proteins (SDHA, p < 0.05; CS, p < 0.001; CI, p < 0.01) and oxidative phosphorylation capacity (OXPHOS, p < 0.05) in comparison to glycolytic muscle. However, avian oxidative skeletal muscle showed no differences in absolute mtDNA, SDHA, CI, complex II, lactate dehydrogenase, or glyceraldehyde 3 phosphate dehydrogenase compared to their glycolytic counterpart. Even so, avian mitochondria isolated from oxidative muscles had greater OXPHOS capacity (p < 0.05) than glycolytic muscle. Conclusions: These data show avian mitochondria function is independent of absolute mtDNA content and protein abundance, and argue that multiple levels of inquiry are warranted to determine the wholistic role of mitochondria in skeletal muscle.
    Keywords:  metabolism; mitochondria; skeletal muscle
    DOI:  https://doi.org/10.3390/metabo14100553
  14. J Nutr Health Aging. 2024 Oct 19. pii: S1279-7707(24)00485-8. [Epub ahead of print]28(12): 100397
      Sarcopenia is associated with structural, ultrastructural, and molecular abnormalities of skeletal muscle. Mitochondrial dysfunction is a pivotal factor involved in muscle aging and sarcopenia. Mitochondrial bioenergetics are significantly reduced in muscles of older adults which is associated with whole-body aerobic capacity, muscle strength, and physical performance. Transcriptional profiling of muscle samples from older adults also revealed inverse correlations between gene expression patterns of autophagy and mitophagy and muscle volume and physical performance. This is in line with the proposition that mitochondrial quality control (MQC) processes are key to organellar and tissue health. MQC encompasses mitochondrial biogenesis, dynamics, and mitophagy. The latter has recently been included among the hallmarks of aging and alterations in MQC have been associated with chronic sterile inflammation as well as muscle atrophy and dysfunction. Several biomarkers spanning MQC, inflammation, metabolism, intercellular communication, and gut microbiota have been linked to sarcopenia. Findings from these initial studies hold promise to inform geroscience-based research in the field of sarcopenia by offering a plausible biological framework for developing gerotherapeutics and monitoring their effects.
    Keywords:  Biology of aging; Extracellular vesicles; Inflammaging; Mitochondrial quality control; Multi-Marker; Omics
    DOI:  https://doi.org/10.1016/j.jnha.2024.100397
  15. BMC Neurol. 2024 Oct 22. 24(1): 407
      BACKGROUND: Focal epilepsy is common in children and adults with mitochondrial disease. Seizures are often refractory to pharmacological treatment and, in this patient group, frequently evolve to refractory focal status epilepticus (also known as epilepsia partialis continua). Where this occurs, the long-term prognosis is poor. Transcranial DC stimulation (tDCS) is a promising, non-invasive, adjunctive treatment alternative to common surgical procedures. Limited recruitment of study participants with this rare disease and the ethical challenges of administering a treatment to one group and not another, while maintaining strict methodological rigour can pose challenges to the design of a clinical study.METHOD: We designed the first delayed start, double-blinded, sham-controlled study to evaluate the efficacy of tDCS as an adjunctive treatment for focal epilepsy. We will include participants with a genetically confirmed diagnosis of mitochondrial disease with drug-resistant focal epilepsy aged ≥ 2 years, aiming to collect 30 episodes of focal status epilepticus, each treated for a maximum period of 14 days. The early start intervention arm will receive tDCS from day 1. The delayed start intervention arm will receive sham stimulation until crossover on day 3. Our primary endpoint is a greater than 50% reduction from baseline (on day 0) in seizure frequency assessed by 3x daily reporting, accelerometery, and video monitoring. Changes in the underlying epileptogenic focus within the brain related to the tDCS intervention will be assessed by magnetic resonance imaging (MRI) and/or electroencephalography (EEG).
    DISCUSSION: Study results in favour of treatment efficacy would support development of tDCS into a mainstream treatment option for focal epileptic seizures related to mitochondrial disease.
    TRIALS REGISTRATION: ISRCTN: 18,241,112; registered on 16/11/2021.
    Keywords:  Cathodal neuromodulation; DC stimulation; Delayed-start study design; Mitochondrial disease; Mitochondrial epilepsy; Pharmacoresistant epilepsy; Refractory focal seizures; Transcranial direct current stimulation (tDCS)
    DOI:  https://doi.org/10.1186/s12883-024-03907-6
  16. Redox Biol. 2024 Oct 17. pii: S2213-2317(24)00377-X. [Epub ahead of print]77 103399
      The accumulation of α-synuclein (α-syn), a key protein in Parkinson's disease (PD), contributes to progressive neuronal damage associated with mitochondrial dysfunction and interactions with various proteins. However, the precise mechanism by which α-syn affects energy metabolism remains unclear. In our study, we used human α-syn (hα-syn) transgenic mice, which exhibit progressive neuronal decline. Through an immunoprecipitation assay specific to hα-syn, we identified an enzyme in the mitochondrial tricarboxylic acid (TCA) cycle as a binding partner-mitochondrial aconitase 2 (ACO2), which converts citrate to isocitrate. Hα-syn increasingly interacted with ACO2 in mitochondria as mice aged, correlating with a progressive decrease in ACO2 activity. The overexpression of ACO2 and the addition of isocitrate, a downstream metabolite of ACO2, were observed to alleviate hα-syn-induced mitochondrial dysfunction and cytotoxicity. Furthermore, we designed an interfering peptide to block the interaction between ACO2 and hα-syn, which showed therapeutic effects in reducing hα-syn toxicity in vitro and in vivo. Our research establishes a direct link between α-syn and the TCA cycle and identifies ACO2 as a promising therapeutic target for improving mitochondrial function and reducing α-syn neurotoxicity in PD.
    Keywords:  Interfering peptides; Mitochondrial aconitase 2; Mitochondrial damage; Parkinson's disease; α-Synuclein
    DOI:  https://doi.org/10.1016/j.redox.2024.103399
  17. Sci Adv. 2024 Oct 25. 10(43): eado5887
      Cellular senescence is a stress-induced irreversible cell cycle arrest involved in tumor suppression and aging. Many stresses, such as telomere shortening and oncogene activation, induce senescence by damaging nuclear DNA. However, the mechanisms linking DNA damage to senescence remain unclear. Here, we show that DNA damage response (DDR) signaling to mitochondria triggers senescence. A genome-wide small interfering RNA screen implicated the outer mitochondrial transmembrane protein BNIP3 in senescence induction. We found that BNIP3 is phosphorylated by the DDR kinase ataxia telangiectasia mutated (ATM) and contributes to an increase in the number of mitochondrial cristae. Stable isotope labeling metabolomics indicated that the increase in cristae enhances fatty acid oxidation (FAO) to acetyl-coenzyme A (acetyl-CoA). This promotes histone acetylation and expression of the cyclin-dependent kinase inhibitor p16INK4a. Notably, pharmacological activation of FAO alone induced senescence both in vitro and in vivo. Thus, mitochondrial energy metabolism plays a critical role in senescence induction and is a potential intervention target to control senescence.
    DOI:  https://doi.org/10.1126/sciadv.ado5887
  18. J Vis Exp. 2024 Oct 04.
      Mitochondrial transfer is a normal physiological phenomenon that occurs widely among various types of cells. In the study to date, the most important pathway for mitochondrial transport is through tunneling nanotubes (TNTs). There have been many studies reporting that mesenchymal stem cells (MSCs) can transfer mitochondria to other cells by TNTs. However, few studies have demonstrated the phenomenon of bidirectional mitochondrial transfer. Here, our protocol describes an experimental approach to study the phenomenon of mitochondrial transfer between MSCs and retinal pigment epithelial cells in vitro by two mitochondrial tracing methods. We co-cultured mito-GFP-transfected MSCs with mito-RFP-transfected ARPE19 cells (a retinal pigment epithelial cell line) for 24 h. Then, all cells were stained with phalloidin and imaged by confocal microscopy. We observed mitochondria with green fluorescence in ARPE19 cells and mitochondria with red fluorescence in MSCs, indicating that bidirectional mitochondrial transfer occurs between MSCs and ARPE19 cells. This phenomenon suggests that mitochondrial transport is a normal physiological phenomenon that also occurs between MSCs and ARPE19 cells, and mitochondrial transfer from MSCs to ARPE19 cells occurs much more frequently than vice versa. Our results indicate that MSCs can transfer mitochondria into retinal pigment epithelium, and similarly predict that MSCs can fulfill their therapeutic potential through mitochondrial transport in the retinal pigment epithelium in the future. Additionally, mitochondrial transfer from ARPE19 cells to MSCs remains to be further explored.
    DOI:  https://doi.org/10.3791/66917
  19. Dev Growth Differ. 2024 Oct;66(8): 398-413
      Mitochondria are unique organelles that have their own genome (mtDNA) and perform various pivotal functions within a cell. Recently, evidence has highlighted the role of mitochondria in the process of stem cell differentiation, including differentiation of neural stem cells (NSCs). Here we studied the importance of mtDNA function in the early differentiation process of NSCs in two cell culture models: the CGR8-NS cell line that was derived from embryonic stem cells by a lineage selection technique, and primary NSCs that were isolated from embryonic day 14 mouse fetal forebrain. We detected a dramatic increase in mtDNA content upon NSC differentiation to adapt their mtDNA levels to their differentiated state, which was not accompanied by changes in mitochondrial transcription factor A expression. As chemical mtDNA depletion by ethidium bromide failed to generate living ρ° cell lines from both NSC types, we used inhibition of mtDNA polymerase-γ by 2'-3'-dideoxycytidine to reduce mtDNA replication and subsequently cellular mtDNA content. Inhibition of mtDNA replication upon NSC differentiation reduced neurogenesis but not gliogenesis. The mtDNA depletion did not change energy production/consumption or cellular reactive oxygen species (ROS) content in the NSC model used. In conclusion, mtDNA replication is essential for neurogenesis but not gliogenesis in fetal NSCs through as yet unknown mechanisms, which, however, are largely independent of energy/ROS metabolism.
    Keywords:  differentiation; gliogenesis; mtDNA; neural stem cells; neurogenesis
    DOI:  https://doi.org/10.1111/dgd.12946
  20. Clin Genet. 2024 Oct 21.
      Disorders of somatic mosaicism (DoSMs) are rare genetic disorders arising from postzygotic alteration leading to segmental/nonsegmental disease. Current professional guidelines for standardized variant interpretation focus on germline and cancer variants, making them suboptimal for DoSM variant interpretation. The Brain Malformations Variant Curation Expert Panel (BMVCEP) modified existing guidelines to account for brain-specific disorders of somatic mosaicism, but applicability to other DoSM presentations is limited. At Washington University in St. Louis School of Medicine, we have adopted the BMVCEP interpretation framework but suggested alterations that make it more suitable for generalized DoSM variant classification. These modifications include (1) expanding applicability beyond genes associated with brain malformations, (2) introduction of a criterion to interpret truncating variants at the C-terminus of gain of function genes, (3) establishment of a variant allele fraction (VAF) cutoff for applying de novo criteria, and (4) demonstration that in silico prediction tools are relevant to interpretation of gain of function missense variants. Furthermore, modifications to BMVCEP guidelines reduce the number of variants classified as uncertain. The variant classification considerations that we propose have the potential to improve the accuracy of somatic variant classification, better inform clinical care, and may benefit clinical laboratories also conducting DoSM testing.
    Keywords:  disorders of somatic mosaicism; guidelines; rules modification; somatic mosaicism; variant classification; variant interpretation
    DOI:  https://doi.org/10.1111/cge.14636
  21. J Mol Biol. 2024 Oct 22. pii: S0022-2836(24)00461-3. [Epub ahead of print] 168832
      CAD, the multi-enzymatic protein essential for initiating the de novo biosynthesis of pyrimidine nucleotides, forms large hexamers whose structure and function are not fully understood. Defects in CAD cause a severe neurometabolic disorder that is challenging to diagnose. We developed a cellular functional assay to identify defective CAD variants, and in this study, we characterized five pathogenic missense mutations in CAD's dihydroorotase (DHO) and aspartate transcarbamylase (ATC) domains. All mutations impaired enzymatic activities, with two notably disrupting the formation of DHO dimers and ATC trimers. Combining crystal structures and AlphaFold predictions, we modeled the hexameric CAD complex, highlighting the central role of the DHO and ATC domains in its assembly. Our findings provide insight into CAD's stability, function, and organization, revealing that correct oligomerization of CAD into a supramolecular complex is required for its function in nucleotide synthesis and that mutations affecting this assembly are potentially pathogenic.
    Keywords:  Nucleotide biosynthesis; X-ray crystallography; aspartate transcarbamoylase; dihydroorotase; inborn errors of metabolisms; molecular dynamics; pathogenic variant
    DOI:  https://doi.org/10.1016/j.jmb.2024.168832
  22. Brain Commun. 2024 ;6(5): fcae350
      Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. A key pathological signature of ALS is the cytoplasmic mislocalization and aggregation of TDP-43 in affected motor neurons, which is found in 97% of cases. Recent reports have shown that mitochondrial dysfunction plays a significant role in motor neuron degeneration in ALS, and TDP-43 modulates several mitochondrial transcripts. In this study, we used induced pluripotent stem cell-derived motor neurons from ALS patients with TDP-43 mutations and a transgenic TDP-43M337V mouse model to determine how TDP-43 mutations alter mitochondrial function and axonal transport. We detected significantly reduced mitochondrial respiration and ATP production in patient induced pluripotent stem cell-derived motor neurons, linked to an interaction between TDP-43M337V with ATPB and COX5A. A downstream reduction in speed of retrograde axonal transport in patient induced pluripotent stem cell-derived motor neurons was detected, which correlated with downregulation of the motor protein complex, DCTN1/dynein. Overexpression of DCTN1 in patient induced pluripotent stem cell-derived motor neurons significantly increased the percentage of retrograde travelling mitochondria and reduced the percentage of stationary mitochondria. This study shows that ALS induced pluripotent stem cell-derived motor neurons with mutations in TDP-43 have deficiencies in essential mitochondrial functions with downstream effects on retrograde axonal transport, which can be partially rescued by DCTN1 overexpression.
    Keywords:  amyotrophic lateral sclerosis; axonal transport; induced pluripotent stem cells; mitochondrial dysfunction; motor proteins
    DOI:  https://doi.org/10.1093/braincomms/fcae350
  23. Nat Commun. 2024 Oct 23. 15(1): 9129
      We present SpliceTransformer (SpTransformer), a deep-learning framework that predicts tissue-specific RNA splicing alterations linked to human diseases based on genomic sequence. SpTransformer outperforms all previous methods on splicing prediction. Application to approximately 1.3 million genetic variants in the ClinVar database reveals that splicing alterations account for 60% of intronic and synonymous pathogenic mutations, and occur at different frequencies across tissue types. Importantly, tissue-specific splicing alterations match their clinical manifestations independent of gene expression variation. We validate the enrichment in three brain disease datasets involving over 164,000 individuals. Additionally, we identify single nucleotide variations that cause brain-specific splicing alterations, and find disease-associated genes harboring these single nucleotide variations with distinct expression patterns involved in diverse biological processes. Finally, SpTransformer analysis of whole exon sequencing data from blood samples of patients with diabetic nephropathy predicts kidney-specific RNA splicing alterations with 83% accuracy, demonstrating the potential to infer disease-causing tissue-specific splicing events. SpTransformer provides a powerful tool to guide biological and clinical interpretations of human diseases.
    DOI:  https://doi.org/10.1038/s41467-024-53088-6
  24. Nat Commun. 2024 Oct 22. 15(1): 9098
      The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.
    DOI:  https://doi.org/10.1038/s41467-024-53194-5
  25. Proc Natl Acad Sci U S A. 2024 Oct 29. 121(44): e2401218121
      Defective glucose-stimulated insulin secretion (GSIS) and β-cell senescence are hallmarks in diabetes. The mitochondrial enzyme pyruvate carboxylase (PC) has been shown to promote GSIS and β-cell proliferation in the clonal β-cell lines, yet its physiological relevance remains unknown. Here, we provide animal and human data showing a role of PC in protecting β-cells against senescence and maintaining GSIS under different physiological and pathological conditions. β-cell-specific deletion of PC impaired GSIS and induced β-cell senescence in the mouse models under either a standard chow diet or prolonged high-fat diet feeding. Transcriptomic analysis indicated that p53-related senescence and cell cycle arrest are activated in PC-deficient islets. Overexpression of PC inhibited hyperglycemia- and aging-induced p53-related senescence in human and mouse islets as well as INS-1E β-cells, whereas knockdown of PC provoked senescence. Mechanistically, PC interacted with MDM2 to prevent its degradation via the MDM2 binding motif, which in turn restricts the p53-dependent senescent program in β-cells. On the contrary, the regulatory effects of PC on GSIS and the tricarboxylic acid (TCA) anaplerotic flux are p53-independent. We illuminate a function of PC in controlling β-cell senescence through the MDM2-p53 axis.
    Keywords:  MDM2; cellular senescence; diabetes; p53; pyruvate carboxylase
    DOI:  https://doi.org/10.1073/pnas.2401218121
  26. Mol Metab. 2024 Oct 18. pii: S2212-8778(24)00180-7. [Epub ahead of print] 102049
      OBJECTIVES: Experimental and genetic studies suggest that fibroblast growth factor 21 (FGF21) modulates macronutrient and alcohol preferences, but evidence of such regulation in humans remains scarce. To address this gap in translation, we aimed to map the relationships between plasma FGF21 levels, FGF21 genetic variation and habitual macronutrient intake in a large human population.METHODS: We fine-mapped and performed colocalization of the FGF21 genetic region in GWAS summary statistics of plasma FGF21 levels and macronutrient intake. UK Biobank data were used to investigate the associations between FGF21 genetic variants, plasma FGF21 protein levels, and macronutrient intake (including alcohol) assessed with repeated 24-hour recalls. One- and two-sample mendelian randomization were performed to estimate the effects of plasma FGF21 on macronutrient intake.
    RESULTS: We show that the main macronutrient-associated variant rs838133 and the FGF21 cis-pQTL rs838131, both in the FGF21 gene, are distinct genetic signals. Effect directions also suggest that the influence of FGF21 variation on macronutrient intake appear more complex than by direct mediation through plasma FGF21. Only when considering this complexity at FGF21, is plasma FGF21 estimated to reduce alcohol and increase protein and fat intake using mendelian randomization. Importantly, plasma FGF21 levels also appear markedly elevated by primarily high alcohol and low protein intake.
    CONCLUSIONS: These findings support the feedback diet-regulatory mechanism of FGF21 in humans, but highlights the need for mechanistic characterization of the complex FGF21 genetic region.
    Keywords:  Alcohol; Diet preference; Fibroblast growth factor 21; Macronutrients; Mendelian randomization; Nutrigenetics
    DOI:  https://doi.org/10.1016/j.molmet.2024.102049
  27. Sci China Life Sci. 2024 Oct 11.
      Autosomal recessive spinocerebellar ataxias (SCARs) are one of the most common neurodegenerative diseases characterized by progressive ataxia. Although SCARs are known to be caused by mutations in multiple genes, there are still many cases that go undiagnosed or are misdiagnosed. In this study, we presented a SCAR patient, and identified a probable novel pathogenic mutation (c.1A>G, p.M1V) in the AFG3L2 start codon. The proband's genotype included heterozygous mutations of the compound AFG3L2 (p.[M1V]; [R632X] (c.[1A>G]; [1894.C>T])), which were inherited from the father (c.1A>G, p.M1V) and mother (c.1894C>T, p.R632X). Functional studies performed on hiPSCs (human induced pluripotent stem cells) generated from the patients and HEK293T cells showed that the mutations impair mitochondrial function and the unbalanced expression of AFG3L2 mRNA and protein levels. Furthermore, this novel mutation resulted in the degradation of the protein and the reduction of the stability of the AFG3L2 protein, and MCU (mitochondrial calcium uniporter) complex mediated Ca2+ overload.
    Keywords:   AFG3L2 gene; Ca2+ overload; autosomal recessive spinocerebellar ataxia; mitochondrial impairment
    DOI:  https://doi.org/10.1007/s11427-023-2549-2
  28. Cold Spring Harb Perspect Biol. 2024 Oct 21. pii: a041514. [Epub ahead of print]
      Skeletal muscle is one of the tissues with the highest range of variability in metabolic rate, which, to a large extent, is critically dependent on tightly controlled and fine-tuned mitochondrial activity. Besides energy production, other mitochondrial processes, including calcium buffering, generation of heat, redox and reactive oxygen species homeostasis, intermediate metabolism, substrate biosynthesis, and anaplerosis, are essential for proper muscle contractility and performance. It is thus not surprising that adequate mitochondrial function is ensured by a plethora of mechanisms, aimed at balancing mitochondrial biogenesis, proteostasis, dynamics, and degradation. The fine-tuning of such maintenance mechanisms ranges from proper folding or degradation of individual proteins to the elimination of whole organelles, and in extremis, apoptosis of cells. In this review, the present knowledge on these processes in the context of skeletal muscle biology is summarized. Moreover, existing gaps in knowledge are highlighted, alluding to potential future studies and therapeutic implications.
    DOI:  https://doi.org/10.1101/cshperspect.a041514
  29. Nat Commun. 2024 Oct 22. 15(1): 9100
      Obesity and related diseases pose a major health risk, yet current anti-obesity drugs inadequately addressing clinical needs. Here we show AA005, an annonaceous acetogenin mimic, resists obesity induced by high-fat diets and leptin mutations at non-toxic doses, with the alpha subunit of the mitochondrial trifunctional protein (HADHA) as a target identified through proteomics and in vitro validation. Pharmacokinetic analysis shows AA005 enriches in adipose tissue, prompting the creation of adipose-specific Hadha-deficient mice. These mice significantly mitigate diet-induced obesity, echoing AA005's anti-obesity effects. AA005 treatment and Hadha deletion in adipose tissues increase body temperature and energy expenditure in high-fat diet-fed mice. The beneficial impact of AA005 on obesity mitigation is ineffective without uncoupling protein 1 (UCP1), essential for thermogenesis regulation. Our investigation shows the interaction between AA005 and HADHA in mitochondria, activating the UCP1-mediated thermogenic pathway. This substantiates AA005 as a promising compound for obesity treatment, targeting HADHA specifically.
    DOI:  https://doi.org/10.1038/s41467-024-53118-3
  30. Cell Rep. 2024 Oct 18. pii: S2211-1247(24)01230-0. [Epub ahead of print]43(11): 114879
      Calcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by a lack of high-throughput, unbiased, and quantitative methods to identify protein-calcium engagement. To address this, we adapted protein thermostability assays in budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2,884 putative calcium-regulated proteins across human, mouse, and yeast proteomes. These data revealed calcium engagement of signaling hubs and cellular processes, including metabolic enzymes and the spliceosome. Cross-species comparison of calcium-protein engagement and mutagenesis experiments identified residue-specific cation engagement, even within well-known EF-hand domains. Additionally, we found that the dienoyl-coenzyme A (CoA) reductase DECR1 binds calcium at physiologically relevant concentrations with substrate-specific affinity, suggesting direct calcium regulation of mitochondrial fatty acid oxidation. These discovery-based proteomic analyses of calcium effectors establish a key resource to dissect cation engagement and its mechanistic effects across multiple species and diverse biological processes.
    Keywords:  CP: Cell biology; CP: Metabolism; TMTpro; calcium engagement; calcium ion engagement; calcium regulated proteins; cell signaling; magnesium engagement; oxidation of polyunsaturated fatty acids; sample multiplexed quantitation; thermal stability proteomics
    DOI:  https://doi.org/10.1016/j.celrep.2024.114879
  31. N Engl J Med. 2024 Oct 24. pii: 10.1056/NEJMc2410843#sa2. [Epub ahead of print]391(16): 1558-1559
      
    DOI:  https://doi.org/10.1056/NEJMc2410843
  32. Angew Chem Int Ed Engl. 2024 Oct 24. e202413304
      Dysregulation of DNA methylation is associated with human disease, particularly cancer, and the assessment of aberrant methylation patterns holds great promise for clinical diagnostics. However, DNA polymerases do not effectively discriminate between processing 5-methylcytosine (5 mC) and unmethylated cytosine, resulting in the silencing of methylation information during amplification or sequencing. As a result, current detection methods require multi-step DNA conversion treatments or careful analysis of sequencing data to decipher individual 5 mC bases. To overcome these challenges, we propose a novel DNA polymerase-mediated 5 mC detection approach. Here, we describe the engineering of a thermostable DNA polymerase variant derived from Thermus aquaticus with altered fidelity towards 5 mC. Using a screening-based evolutionary approach, we have identified a DNA polymerase that exhibits increased misincorporation towards 5 mC during DNA synthesis. This DNA polymerase generates mutation signatures at methylated CpG sites, allowing direct detection of 5 mC by reading an increased error rate after sequencing without prior treatment of the sample DNA.
    Keywords:  5-methylcytosine; DNA methylation; DNA polymerase; next-generation sequencing; protein engineering
    DOI:  https://doi.org/10.1002/anie.202413304