bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2020–12–13
eleven papers selected by
Edmond Chan, Queen’s University, School of Medicine



  1. Nat Commun. 2020 12 08. 11(1): 6290
      Mitochondria-lysosome interactions are essential for maintaining intracellular homeostasis. Although various fluorescent probes have been developed to visualize such interactions, they remain unable to label mitochondria and lysosomes simultaneously and dynamically track their interaction. Here, we introduce a cell-permeable, biocompatible, viscosity-responsive, small organic molecular probe, Coupa, to monitor the interaction of mitochondria and lysosomes in living cells. Through a functional fluorescence conversion, Coupa can simultaneously label mitochondria with blue fluorescence and lysosomes with red fluorescence, and the correlation between the red-blue fluorescence intensity indicates the progress of mitochondria-lysosome interplay during mitophagy. Moreover, because its fluorescence is sensitive to viscosity, Coupa allowed us to precisely localize sites of mitochondria-lysosome contact and reveal increases in local viscosity on mitochondria associated with mitochondria-lysosome contact. Thus, our probe represents an attractive tool for the localization and dynamic tracking of functional mitochondria-lysosome interactions in living cells.
    DOI:  https://doi.org/10.1038/s41467-020-20067-6
  2. Autophagy. 2020 Dec 10. 1-25
      Mitochondrial dysfunction causes energy deficiency and nigrostriatal neurodegeneration which is integral to the pathogenesis of Parkinson disease (PD). Clearance of defective mitochondria involves fission and ubiquitin-dependent degradation via mitophagy to maintain energy homeostasis. We hypothesize that LRRK2 (leucine-rich repeat kinase 2) mutation disrupts mitochondrial turnover causing accumulation of defective mitochondria in aging brain. We found more ubiquitinated mitochondria with aberrant morphology associated with impaired function in aged (but not young) LRRK2R1441G knockin mutant mouse striatum compared to wild-type (WT) controls. LRRK2R1441G mutant mouse embryonic fibroblasts (MEFs) exhibited reduced MAP1LC3/LC3 activation indicating impaired macroautophagy/autophagy. Mutant MEFs under FCCP-induced (mitochondrial uncoupler) stress showed increased LC3-aggregates demonstrating impaired mitophagy. Using a novel flow cytometry assay to quantify mitophagic rates in MEFs expressing photoactivatable mito-PAmCherry, we found significantly slower mitochondria clearance in mutant cells. Specific LRRK2 kinase inhibition using GNE-7915 did not alleviate impaired mitochondrial clearance suggesting a lack of direct relationship to increased kinase activity alone. DNM1L/Drp1 knockdown in MEFs slowed mitochondrial clearance indicating that DNM1L is a prerequisite for mitophagy. DNM1L knockdown in slowing mitochondrial clearance was less pronounced in mutant MEFs, indicating preexisting impaired DNM1L activation. DNM1L knockdown disrupted mitochondrial network which was more evident in mutant MEFs. DNM1L-Ser616 and MAPK/ERK phosphorylation which mediate mitochondrial fission and downstream mitophagic processes was apparent in WT using FCCP-induced stress but not mutant MEFs, despite similar total MAPK/ERK and DNM1L levels. In conclusion, aberrant mitochondria morphology and dysfunction associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in mutant LRRK2 MEFs and mouse brain. Abbreviations: ATP: adenosine triphosphate; BAX: BCL2-associated X protein; CDK1: cyclin-dependent kinase 1; CDK5: cyclin-dependent kinase 5; CQ: chloroquine; CSF: cerebrospinal fluid; DNM1L/DRP1: dynamin 1-like; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; LAMP2A: lysosomal-associated membrane protein 2A; LRRK2: leucine-rich repeat kinase 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MEF: mouse embryonic fibroblast; MFN1: mitofusin 1; MMP: mitochondrial membrane potential; PAmCherry: photoactivatable-mCherry; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RAB10: RAB10, member RAS oncogene family; RAF: v-raf-leukemia oncogene; SNCA: synuclein, alpha; TEM: transmission electron microscopy; VDAC: voltage-dependent anion channel; WT: wild type; SQSTM1/p62: sequestosome 1.
    Keywords:  Aging; Dnm1l/DRP1; SQSTM1/p62; knockin mice; macroautophagy; mitochondria dysfunction; mitochondrial fission; mitophagy; parkinson disease; ubiquitination
    DOI:  https://doi.org/10.1080/15548627.2020.1850008
  3. Cell Rep. 2020 Dec 08. pii: S2211-1247(20)31464-9. [Epub ahead of print]33(10): 108475
      Membrane contact sites (MCS) are intracellular regions where two organelles come closer to exchange information and material. The majority of the endoplasmic reticulum (ER) MCS are attributed to the ER-localized tether proteins VAPA, VAPB, and MOSPD2. These recruit other proteins to the ER by interacting with their FFAT motifs. Here, we describe MOSPD1 and MOSPD3 as ER-localized tethers interacting with FFAT motif-containing proteins. Using BioID, we identify proteins interacting with VAP and MOSPD proteins and find that MOSPD1 and MOSPD3 prefer unconventional FFAT-related FFNT (two phenylalanines [FF] in a neutral tract) motifs. Moreover, VAPA/VAPB/MOSPD2 and MOSPD1/MOSPD3 assemble into two separate ER-resident complexes to interact with FFAT and FFNT motifs, respectively. Because of their ability to interact with FFNT motifs, MOSPD1 and MOSPD3 could form MCS between the ER and other organelles. Collectively, these findings expand the VAP family of proteins and highlight two separate complexes in control of interactions between intracellular compartments.
    Keywords:  Emery-Dreifuss muscular dystrophy; FFAT; FFNT; MOSPD1; MOSPD2; MOSPD3; VAPA; VAPB; endoplasmic reticulum; membrane contact sites
    DOI:  https://doi.org/10.1016/j.celrep.2020.108475
  4. Cell Metab. 2020 Dec 01. pii: S1550-4131(20)30651-3. [Epub ahead of print]
      Neutrophils can function and survive in injured and infected tissues, where oxygen and metabolic substrates are limited. Using radioactive flux assays and LC-MS tracing with U-13C glucose, glutamine, and pyruvate, we observe that neutrophils require the generation of intracellular glycogen stores by gluconeogenesis and glycogenesis for effective survival and bacterial killing. These metabolic adaptations are dynamic, with net increases in glycogen stores observed following LPS challenge or altitude-induced hypoxia. Neutrophils from patients with chronic obstructive pulmonary disease have reduced glycogen cycling, resulting in impaired function. Metabolic specialization of neutrophils may therefore underpin disease pathology and allow selective therapeutic targeting.
    Keywords:  COPD; GYS1; gluconeogenesis; glycogen; glycogenesis; glycogenolysis; glycolysis; inflammation; neutrophil
    DOI:  https://doi.org/10.1016/j.cmet.2020.11.016
  5. EMBO J. 2020 Dec 09. e107326
      Mitochondria are dynamic organelles adapting their morphology by cycles of fission and fusion events to control cellular homeostasis. In this issue of The EMBO Journal, Murata and colleagues (2020) show that lack of mitochondrial division leads to safeguard mechanisms, induced by transient mitochondrial membrane depolarization and activation of the metalloprotease OMA1, to prevent extreme mitochondrial fusion and to maintain optimal mitochondrial bioenergetics.
    DOI:  https://doi.org/10.15252/embj.2020107326
  6. Cell Calcium. 2020 Nov 22. pii: S0143-4160(20)30162-7. [Epub ahead of print]93 102320
      Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
    Keywords:  Epac; Mitochondria; PKA; Phosphatases; Signalling microdomains; cAMP
    DOI:  https://doi.org/10.1016/j.ceca.2020.102320
  7. JCI Insight. 2020 Dec 08. pii: 139826. [Epub ahead of print]
      Chronic kidney disease (CKD) results in a progressive skeletal myopathy involving atrophy, weakness, and fatigue. Mitochondria have been thought to contribute to skeletal myopathy, however, the molecular mechanisms underlying changes in muscle metabolism in CKD are unknown. This study employed a comprehensive mitochondrial phenotyping platform to elucidate the mechanisms of skeletal muscle mitochondrial impairment in mice with adenine-induced CKD. CKD mice displayed significant reductions in mitochondrial oxidative phosphorylation (OXPHOS), which was strongly correlated with glomerular filtration rate, suggesting a link between kidney function and muscle mitochondrial health. Biochemical assays uncovered that OXPHOS dysfunction was driven principally by reduced activity of matrix dehydrogenases. Untargeted metabolomics analyses in skeletal muscle revealed a distinct metabolite profile in CKD muscle including accumulation of uremic toxins that strongly associated with the degree of mitochondrial impairment. Additional muscle phenotyping found that CKD mice experienced muscle atrophy and increased muscle protein degradation, but only male CKD mice had lower maximal contractile force. CKD mice also had morphological changes indicative of destabilization in the neuromuscular junction. This study provides the first comprehensive evaluation of mitochondrial health in murine CKD muscle and uncovers several unknown uremic metabolites that are strongly associated with the degree of mitochondrial impairment.
    Keywords:  Bioenergetics; Mitochondria; Muscle Biology; Nephrology; Skeletal muscle
    DOI:  https://doi.org/10.1172/jci.insight.139826
  8. FEBS J. 2020 Dec 10.
      The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for most mitochondrial proteins. The TOM complex is a multi-subunit membrane protein complex consisting of a β-barrel protein Tom40 and six α-helical transmembrane (TM) proteins, receptor subunits Tom20, Tom22, and Tom70, and regulatory subunits Tom5, Tom6, and Tom7. Although nearly 30 years have passed since the main components of the TOM complex were identified and characterized, the structural details of the TOM complex remained poorly understood until recently. Thanks to the rapid development of the cryo-electron microscopy (EM) technology, high-resolution structures of the yeast TOM complex have become available. The identified structures showed a symmetric dimer containing 5 different subunits including Tom22. Biochemical and mutational analyses based on the TOM complex structure revealed the presence of different translocation paths within the Tom40 import channel for different classes of translocating precursor proteins. Previous studies including our crosslinking analyses indicated that the TOM complex in intact mitochondria is present as a mixture of the trimeric complex containing Tom22. Furthermore, the dimeric complex lacking Tom22, and the trimer and dimer may handle different sets of mitochondrial precursor proteins for translocation across the outer membrane. In this Structural Snapshot, we will discuss possible re-arrangement of the subunit interactions upon dynamic conversion of the TOM complex between the different subunit assembly states, the Tom22-containing core dimer and trimer.
    Keywords:  Cryo-EM; Mitochondria; TOM complex; Tom40 channel; preprotein; protein translocation
    DOI:  https://doi.org/10.1111/febs.15661
  9. J Biol Chem. 2020 Dec 09. pii: jbc.RA120.016551. [Epub ahead of print]
      The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and glutathione metabolism. Previous reports proposed that mitochondrial ROS production and disruption of the glutathione pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/ hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production (MitoPQ), or selectively disrupt mitochondrial thiol homeostasis (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide, or disruption of mitochondrial thiol homeostasis affect activation of the Nrf2 system in cells, which was assessed by Nrf2 protein level, nuclear translocation and expression of its target genes. We found that selective disruption of the mitochondrial glutathione pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, while using MitoPQ to enhance production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.
    Keywords:  Nuclear factor 2 (erythroid-derived 2-like factor) (NFE2L2) (Nrf2); mitochondria; reactive oxygen species (ROS); superoxide ion; thiol
    DOI:  https://doi.org/10.1074/jbc.RA120.016551
  10. Am J Physiol Cell Physiol. 2020 Dec 09.
      Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the current knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and EMRE. Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant negative beta subunit (MCUb), MCU regu-lator 1 (MCUR1) and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mito-chondrial mem-brane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regu-latory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological con-ditions af-fecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete and under-standing the precise role for MCU-mediated mito-chondrial Ca2+ signaling in disease requires further research ef-forts.
    Keywords:  Calcium; Channel; MCU; mitochondria; uniporter
    DOI:  https://doi.org/10.1152/ajpcell.00502.2020
  11. Free Radic Biol Med. 2020 Dec 04. pii: S0891-5849(20)31644-0. [Epub ahead of print]
      SIRT3 is a major regulator of mitochondrial acetylome. Here we show that SIRT3 is neuroprotective in Huntington's disease (HD), a motor neurodegenerative disorder caused by an abnormal expansion of polyglutamines in the huntingtin protein (HTT). Protein and enzymatic analysis revealed that increased SIRT3 is a signature in several HD models, including human HD brain, which is regulated by oxidative species. While loss of SIRT3 further aggravated the oxidative phenotype, antioxidant treatment regularized SIRT3 levels. SIRT3 overexpression promoted the antioxidant effect in cells expressing mutant HTT, leading to enhanced mitochondrial function and balanced dynamics. Decreased Fis1 and Drp1 accumulation in mitochondria induced by SIRT3 expression favored mitochondrial elongation, while the SIRT3 activator ε-viniferin improved anterograde mitochondrial neurite transport, sustaining cell survival. Notably, SIRT3 fly-ortholog dSirt2 overexpression in HD flies ameliorated neurodegeneration and extended lifespan. These findings provide a link between oxidative stress and mitochondrial dysfunction hypotheses in HD and offer an opportunity for therapeutic development.
    Keywords:  Huntington disease; SIRT3; mitochondrial dynamics; mitochondrial function; oxidative stress
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2020.11.031