bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2021‒02‒21
fifteen papers selected by
Edmond Chan
Queen’s University, School of Medicine


  1. Science. 2021 Feb 19. 371(6531): 846-849
      Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo-electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1-like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.
    DOI:  https://doi.org/10.1126/science.abe0763
  2. Nature. 2021 Feb 17.
      Citrate is best known as an intermediate in the tricarboxylic acid cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis1-3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic concentration of citrate4,5. Liver cells import citrate through the sodium-dependent citrate transporter NaCT (encoded by SLC13A5) and, as a consequence, this protein is a potential target for anti-obesity drugs. Here, to understand the structural basis of its inhibition mechanism, we determined cryo-electron microscopy structures of human NaCT in complexes with citrate or a small-molecule inhibitor. These structures reveal how the inhibitor-which binds to the same site as citrate-arrests the transport cycle of NaCT. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish the transport activity of NaCT in the brain and thereby cause epilepsy associated with mutations in SLC13A5 in newborns (which is known as SLC13A5-epilepsy)6-8.
    DOI:  https://doi.org/10.1038/s41586-021-03230-x
  3. Nature. 2021 02;590(7846): 480-485
      Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.
    DOI:  https://doi.org/10.1038/s41586-021-03221-y
  4. Cell Metab. 2021 Feb 09. pii: S1550-4131(21)00013-9. [Epub ahead of print]
      The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or β-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
    Keywords:  MIC19; PERK-OGT axis; TOM70; brown adipocytes; cold stress; cristae biogenesis; mitochondrial protein import; respiration
    DOI:  https://doi.org/10.1016/j.cmet.2021.01.013
  5. Sci Adv. 2021 Feb;pii: eabf0717. [Epub ahead of print]7(8):
      Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
    DOI:  https://doi.org/10.1126/sciadv.abf0717
  6. Cell Metab. 2021 Feb 10. pii: S1550-4131(21)00056-5. [Epub ahead of print]
      Obesity is a major risk factor for adverse outcomes in breast cancer; however, the underlying molecular mechanisms have not been elucidated. To investigate the role of crosstalk between mammary adipocytes and neoplastic cells in the tumor microenvironment (TME), we performed transcriptomic analysis of cancer cells and adjacent adipose tissue in a murine model of obesity-accelerated breast cancer and identified glycine amidinotransferase (Gatm) in adipocytes and Acsbg1 in cancer cells as required for obesity-driven tumor progression. Gatm is the rate-limiting enzyme in creatine biosynthesis, and deletion in adipocytes attenuated obesity-driven tumor growth. Similarly, genetic inhibition of creatine import into cancer cells reduced tumor growth in obesity. In parallel, breast cancer cells in obese animals upregulated the fatty acyl-CoA synthetase Acsbg1 to promote creatine-dependent tumor progression. These findings reveal key nodes in the crosstalk between adipocytes and cancer cells in the TME necessary for obesity-driven breast cancer progression.
    Keywords:  Acsbg1; Gatm; breast cancer; creatine; hypoxia; obesity
    DOI:  https://doi.org/10.1016/j.cmet.2021.01.018
  7. PLoS Pathog. 2021 Feb 17. 17(2): e1009340
      Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.
    DOI:  https://doi.org/10.1371/journal.ppat.1009340
  8. Nat Rev Mol Cell Biol. 2021 Feb 16.
      Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
    DOI:  https://doi.org/10.1038/s41580-021-00332-2
  9. Cancer Discov. 2021 Jan 27. pii: candisc.1227.2020. [Epub ahead of print]
      Mitochondria are involved in many biological processes including cellular homeostasis, energy generation and apoptosis. Moreover, mitochondrial and metabolic pathways are interconnected with gene expression to regulate cellular functions such as cell growth, survival, differentiation and immune recognition. Metabolites and mitochondrial enzymes regulate chromatin modifying-enzymes, chromatin remodeling, and transcription regulators. Deregulation of mitochondrial pathways and metabolism leads to alterations in gene expression that promotes cancer development, progression and evasion of the immune system. This review highlights how mitochondrial and metabolic pathways function as a central mediator to control gene expression, specifically on stem cell functions, differentiation and immune response in leukemia.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1227
  10. Mol Biol Cell. 2021 Feb 17. mbcE20110748
      For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of non-productive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homolog is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.
    DOI:  https://doi.org/10.1091/mbc.E20-11-0748
  11. EMBO Rep. 2021 Feb 15. e51635
      Mitochondria possess a small genome that codes for core subunits of the oxidative phosphorylation system and whose expression is essential for energy production. Information on the regulation and spatial organization of mitochondrial gene expression in the cellular context has been difficult to obtain. Here we devise an imaging approach to analyze mitochondrial translation within the context of single cells, by following the incorporation of clickable non-canonical amino acids. We apply this method to multiple cell types, including specialized cells such as cardiomyocytes and neurons, and monitor with spatial resolution mitochondrial translation in axons and dendrites. We also show that translation imaging allows to monitor mitochondrial protein expression in patient fibroblasts. Approaching mitochondrial translation with click chemistry opens new avenues to understand how mitochondrial biogenesis is integrated into the cellular context and can be used to assess mitochondrial gene expression in mitochondrial diseases.
    Keywords:  gene expression; hippocampal neuron; mitochondria; synapse; translation
    DOI:  https://doi.org/10.15252/embr.202051635
  12. Nat Commun. 2021 02 18. 12(1): 1135
      While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.
    DOI:  https://doi.org/10.1038/s41467-021-21279-0
  13. Cell Chem Biol. 2021 Feb 09. pii: S2451-9456(21)00042-8. [Epub ahead of print]
      Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
    Keywords:  Golgi apparatus; drug screening; functional probes; high-content analysis; high-content imaging; lysosome; membraneless organelles; mitochondria; organelles
    DOI:  https://doi.org/10.1016/j.chembiol.2021.01.016
  14. Cell Death Dis. 2021 Feb 15. 12(2): 182
      In this work, we have explored the subcellular localization of Bcl2, a major antiapoptotic protein. In U251 glioma cells, we found that Bcl2 is localized mainly in the ER and is translocated to MAM and mitochondria upon induction of apoptosis; this mitochondrial transfer was not restricted to the demonstrator cell line, even if cell-specific modulations exist. We found that the Bcl2/mitochondria interaction is controlled by TOM20, a protein that belongs to the protein import machinery of the mitochondrial outer membrane. The expression of a small domain of interaction of TOM20 with Bcl2 potentiates its anti-apoptotic properties, which suggests that the Bcl2-TOM20 interaction is proapoptotic. The role of MAM and TOM20 in Bcl2 apoptotic mitochondrial localization and function has been confirmed in a yeast model in which the ER-mitochondria encounter structure (ERMES) complex (required for MAM stability in yeast) has been disrupted. Bcl2-TOM20 interaction is thus an additional player in the control of apoptosis.
    DOI:  https://doi.org/10.1038/s41419-021-03471-8
  15. Cell Calcium. 2021 Feb 01. pii: S0143-4160(21)00018-X. [Epub ahead of print]95 102364
      Human mitochondria are complex and highly dynamic biological systems, comprised of over a thousand parts and evolved to fully integrate into the specialized intracellular signaling networks and metabolic requirements of each cell and organ. Over the last two decades, several complementary, top-down computational and experimental approaches have been developed to identify, characterize and modulate the human mitochondrial system, demonstrating the power of integrating classical reductionist and discovery-driven analyses in order to de-orphanize hitherto unknown molecular components of mitochondrial machineries and pathways. To this goal, systematic, multiomics-based surveys of proteome composition, protein networks, and phenotype-to-pathway associations at the tissue, cell and organellar level have been largely exploited to predict the full complement of mitochondrial proteins and their functional interactions, therefore catalyzing data-driven hypotheses. Collectively, these multidisciplinary and integrative research approaches hold the potential to propel our understanding of mitochondrial biology and provide a systems-level framework to unraveling mitochondria-mediated and disease-spanning pathomechanisms.
    Keywords:  Functional associations; Integrative analyses; Mitochondrial system; Multiomics approaches
    DOI:  https://doi.org/10.1016/j.ceca.2021.102364