bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2021–07–11
nine papers selected by
Edmond Chan, Queen’s University, School of Medicine



  1. Dev Cell. 2021 Jun 28. pii: S1534-5807(21)00516-5. [Epub ahead of print]
      Aneuploidy, an unbalanced number of chromosomes, is highly deleterious at the cellular level and leads to senescence, a stress-induced response characterized by permanent cell-cycle arrest and a well-defined associated secretory phenotype. Here, we use a Drosophila epithelial model to delineate the pathway that leads to the induction of senescence as a consequence of the acquisition of an aneuploid karyotype. Whereas aneuploidy induces, as a result of gene dosage imbalance, proteotoxic stress and activation of the major protein quality control mechanisms, near-saturation functioning of autophagy leads to compromised mitophagy, accumulation of dysfunctional mitochondria, and the production of radical oxygen species (ROS). We uncovered a role of c-Jun N-terminal kinase (JNK) in driving senescence as a consequence of dysfunctional mitochondria and ROS. We show that activation of the major protein quality control mechanisms and mitophagy dampens the deleterious effects of aneuploidy, and we identify a role of senescence in proteostasis and compensatory proliferation for tissue repair.
    Keywords:  Drosophila; aneuploidy; autophagy; chromosomal instability; mitochondrial dysfunction; mitophagy; proteotoxic stress; senescence; tissue repair
    DOI:  https://doi.org/10.1016/j.devcel.2021.06.009
  2. EMBO Mol Med. 2021 Jul 07. e13086
      Ceramide-induced mitochondrial fission drives high-fat diet (HFD)-induced obesity. However, molecules targeting mitochondrial dynamics have shown limited benefits in murine obesity models. Here, we reveal that these compounds are either unable to block ceramide-induced mitochondrial fission or require extended incubation periods to be effective. In contrast, targeting endolysosomal trafficking events important for mitochondrial fission rapidly and robustly prevented ceramide-induced disruptions in mitochondrial form and function. By simultaneously inhibiting ARF6- and PIKfyve-dependent trafficking events, the synthetic sphingolipid SH-BC-893 blocked palmitate- and ceramide-induced mitochondrial fission, preserved mitochondrial function, and prevented ER stress in␣vitro. Similar benefits were observed in the tissues of HFD-fed mice. Within 4 h of oral administration, SH-BC-893 normalized mitochondrial morphology in the livers and brains of HFD-fed mice, improved mitochondrial function in white adipose tissue, and corrected aberrant plasma leptin and adiponectin levels. As an interventional agent, SH-BC-893 restored normal body weight, glucose disposal, and hepatic lipid levels in mice consuming a HFD. In sum, the sphingolipid analog SH-BC-893 robustly and acutely blocks ceramide-induced mitochondrial dysfunction, correcting diet-induced obesity and its metabolic sequelae.
    Keywords:  ceramide; high-fat diet; leptin resistance; mitochondrial fission; obesity
    DOI:  https://doi.org/10.15252/emmm.202013086
  3. Aging Cell. 2021 Jul 03. e13419
      Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24-26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4-6 months) mice hearts impair cardiomyocyte contractility and shows aging-like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age-related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.
    Keywords:  SIRT1; SIRT3; aging; ischemia/reperfusion; mitochondria fission and fusion
    DOI:  https://doi.org/10.1111/acel.13419
  4. Autophagy. 2021 Jul 07. 1-18
      There is increasing evidence that mitophagy, a specialized form of autophagy to degrade and clear long-lived or damaged mitochondria, is impaired in aging and age-related disease. Previous study has demonstrated the obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. However, it remains unknown whether mitophagy functions in oocyte and what's the regulatory mechanism in oocyte aging. In the study, when fully grown oocytes were treated with CCCP, an uncoupling agent to induce mitophagy, we found the activation of the PRKN-mediated mitophagy pathway accompanied the blockage of meiosis at metaphase I stage. Our result then demonstrated its association with the decreased activity of RAB7 and all the observed defects in CCCP treated oocytes could be effectively rescued by microinjection of mRNA encoding active RAB7Q67L or treatment with the RAB7 activator ML098. Further study indicated PRKN protein level as a rate-limiting factor to facilitate degradation of RAB7 and its GEF (guanine nucleotide exchange factor) complex CCZ1-MON1 through the ubiquitin-proteasome system. In GV oocytes collected during ovarian aging, we found the age-related increase of PINK1 and PRKN proteins and a significant decrease of RAB7 which resulted in defects of mitophagosome formation and the accumulation of damaged mitochondria. The age-related retardation of female fertility was improved after in vivo treatment of ML098. Thus, RAB7 activity is required to maintain the balance between mitophagy and chromosome stability and RAB7 activator is a good candidate to ameliorate age-related deterioration of oocyte quality.Abbreviations: ATG9: autophagy related 9A; ATP: adenosine triphosphate; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CCZ1: CCZ1 vacuolar protein trafficking and biogenesis associated; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GAPs: GTPase-activating proteins; GEF: guanine nucleotide exchange factor; GV: germinal vesicle; GVBD: germinal vesicle breakdown; LAMP1: lysosomal-associated membrane protein 1; MI: metaphase I stage of meiosis; MII: metaphase II stage of meiosis; Mito: MitoTracker; mtDNA: mitochondrial DNA; MON1: MON1 homolog, secretory trafficking associated; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RAB7: RAB7, member RAS oncogene family; ROS: reactive oxygen species; TEM: transmission electron microscopy; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin, beta; UB: ubiquitin.
    Keywords:  Aging; PRKN; RAB7; meiosis; mitophagy; oocyte
    DOI:  https://doi.org/10.1080/15548627.2021.1946739
  5. Cell Death Dis. 2021 Jul 03. 12(7): 671
      The balanced functionality of cellular proteostatic modules is central to both proteome stability and mitochondrial physiology; thus, the age-related decline of proteostasis also triggers mitochondrial dysfunction, which marks multiple degenerative disorders. Non-functional mitochondria are removed by mitophagy, including Parkin/Pink1-mediated mitophagy. A common feature of neuronal or muscle degenerative diseases, is the accumulation of damaged mitochondria due to disrupted mitophagy rates. Here, we exploit Drosophila as a model organism to investigate the functional role of Parkin/Pink1 in regulating mitophagy and proteostatic responses, as well as in suppressing degenerative phenotypes at the whole organism level. We found that Parkin or Pink1 knock down in young flies modulated proteostatic components in a tissue-dependent manner, increased cell oxidative load, and suppressed mitophagy in neuronal and muscle tissues, causing mitochondrial aggregation and neuromuscular degeneration. Concomitant to Parkin or Pink1 knock down cncC/Nrf2 overexpression, induced the proteostasis network, suppressed oxidative stress, restored mitochondrial function, and elevated mitophagy rates in flies' tissues; it also, largely rescued Parkin or Pink1 knock down-mediated neuromuscular degenerative phenotypes. Our in vivo findings highlight the critical role of the Parkin/Pink1 pathway in mitophagy, and support the therapeutic potency of Nrf2 (a druggable pathway) activation in age-related degenerative diseases.
    DOI:  https://doi.org/10.1038/s41419-021-03952-w
  6. Biochem Biophys Res Commun. 2021 Jun 29. pii: S0006-291X(21)01002-0. [Epub ahead of print]568 95-102
      Sarcopenia is a syndrome characterized by progressive loss of muscle mass and function during aging. Although mitochondrial dysfunction and related metabolic defects precede age-related changes in muscle, their contributions to muscle aging are still not well known. In this study, we used a Drosophila model to investigate the role of lipophorin receptors (LpRs), a Drosophila homologue of the mammalian very low-density lipoprotein receptor (VLDLR), in mitochondrial dynamics and muscle aging. Muscle-specific knockdown of LpR1 or LpR2 resulted in mitochondrial dysfunction and reduced proteostasis, which contributed to muscle aging. Activation of AMP-activated protein kinase (AMPK) ameliorated muscle dysfunction induced by LpR1 knockdown. These results suggest that LpR1/VLDLR is a novel key target that modulates age-dependent lipid remodeling and muscle homeostasis.
    Keywords:  Aging; Drosophila model; Lipoprotein receptor; Mitochondria; Sarcopenia
    DOI:  https://doi.org/10.1016/j.bbrc.2021.06.080
  7. FASEB J. 2021 Aug;35(8): e21757
      Pyroptosis and intrinsic apoptosis are two forms of regulated cell death driven by active caspases where plasma membrane permeabilization is induced by gasdermin pores. Caspase-1 induces gasdermin D pore formation during pyroptosis, whereas caspase-3 promotes gasdermin E pore formation during apoptosis. These two types of cell death are accompanied by mitochondrial outer membrane permeabilization due to BAK/BAX pore formation in the external membrane of mitochondria, and to some extent, this complex also affects the inner mitochondrial membrane facilitating mitochondrial DNA relocalization from the matrix to the cytosol. However, the detailed mechanism responsible for this process has not been investigated. Herein, we reported that gasdermin processing is required to induce mitochondrial DNA release from cells during pyroptosis and apoptosis. Gasdermin targeted at the plasma membrane promotes a fast mitochondrial collapse along with the initial accumulation of mitochondrial DNA in the cytosol and then facilitates the DNA's release from the cell when the plasma membrane ruptures. These findings demonstrate that gasdermin action has a critical effect on the plasma membrane and facilitates the release of mitochondrial DNA as a damage-associated molecular pattern.
    Keywords:  GSDMD; GSDME; macrophages; mitochondrial DNA; pyroptosis
    DOI:  https://doi.org/10.1096/fj.202100085R
  8. Methods Cell Biol. 2021 ;pii: S0091-679X(20)30212-0. [Epub ahead of print]164 113-118
      Mitophagy is an evolutionally conserved cellular process that eliminates dysfunctional and excess mitochondria, thereby facilitating mitochondrial quality control and metabolic recycling. In addition, mitophagy is essential for cellular homeostasis and tissue development, and mitophagic dysfunction is related to various pathologies including neurodegenerative diseases and cancer. Thus, accurate quantitative measurement of mitophagy is one of the hot topics in the field of mitochondrial research. Fluorescence microscopical technology, one of the most widely used technologies at present, can well explain the occurrence and activity of mitophagy. Here, we introduce in detail an experimental method for the immunofluorescence-based quantitativ determination of mitophagy, which not only servers the in-depth study of mitochondrial homeostasis regulation, but also allows for the analyzing mitochondrial autophagy pathologies such as aging, neurodegenerative diseases and cancer.
    Keywords:  Detection; Fluorescence microscope; Method; MitoTracker; Mitophagy
    DOI:  https://doi.org/10.1016/bs.mcb.2020.12.006
  9. Methods Cell Biol. 2021 ;pii: S0091-679X(21)00014-5. [Epub ahead of print]164 95-112
      In the perspective to evaluate the toxicity of drug candidates or the exploration of intracellular signaling pathways of cell stress response and pathophysiological conditions, we propose to evaluate cell death, autophagy, mitochondrial network and energetic metabolism by a series of optimized joint protocols for neonatal primary rat cardiomyocytes or H9c2 cardiac cell line in 96 well microtiter plates. We used Digitoxigenin and Digoxin, two cardiac glycosides, and Rapamycin as control drugs, for inhibition of oxidative stress-induced cell death and autophagy induction, respectively.
    Keywords:  Autophagy; Cell death; Cytotoxicity; Metabolism; Mitochondria; Viability
    DOI:  https://doi.org/10.1016/bs.mcb.2021.02.001