bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2023‒07‒23
fourteen papers selected by
Edmond Chan
Queen’s University, School of Medicine


  1. Cell Metab. 2023 Jul 14. pii: S1550-4131(23)00225-5. [Epub ahead of print]
      Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.
    Keywords:  brisk walking; diabetes; fatty liver; mitochondrial cristae; obesity; uracil
    DOI:  https://doi.org/10.1016/j.cmet.2023.06.015
  2. Proc Natl Acad Sci U S A. 2023 07 25. 120(30): e2210599120
      Cardiolipin (CL) is an essential phospholipid for mitochondrial structure and function. Here, we present a small mitochondrial protein, NERCLIN, as a negative regulator of CL homeostasis and mitochondrial ultrastructure. Primate-specific NERCLIN is expressed ubiquitously from the GRPEL2 locus on a tightly regulated low level. NERCLIN overexpression severely disrupts mitochondrial cristae structure and induces mitochondrial fragmentation. Proximity labeling and immunoprecipitation analysis suggested interactions of NERCLIN with CL synthesis and prohibitin complexes on the matrix side of the inner mitochondrial membrane. Lipid analysis indicated that NERCLIN regulates mitochondrial CL content. Furthermore, NERCLIN is responsive to heat stress ensuring OPA1 processing and cell survival. Thus, we propose that NERCLIN contributes to the stress-induced adaptation of mitochondrial dynamics. Our findings add NERCLIN to the group of recently identified small mitochondrial proteins with important regulatory functions.
    Keywords:  NERCLIN; OPA1; cardiolipin; prohibitins; small mitochondrial proteins
    DOI:  https://doi.org/10.1073/pnas.2210599120
  3. Nat Commun. 2023 07 19. 14(1): 4356
      The large cytosolic GTPase, dynamin-related protein 1 (Drp1), mediates both physiological and pathological mitochondrial fission. Cell stress triggers Drp1 binding to mitochondrial Fis1 and subsequently, mitochondrial fragmentation, ROS production, metabolic collapse, and cell death. Because Drp1 also mediates physiological fission by binding to mitochondrial Mff, therapeutics that inhibit pathological fission should spare physiological mitochondrial fission. P110, a peptide inhibitor of Drp1-Fis1 interaction, reduces pathology in numerous models of neurodegeneration, ischemia, and sepsis without blocking the physiological functions of Drp1. Since peptides have pharmacokinetic limitations, we set out to identify small molecules that mimic P110's benefit. We map the P110-binding site to a switch I-adjacent grove (SWAG) on Drp1. Screening for SWAG-binding small molecules identifies SC9, which mimics P110's benefits in cells and a mouse model of endotoxemia. We suggest that the SWAG-binding small molecules discovered in this study may reduce the burden of Drp1-mediated pathologies and potentially pathologies associated with other members of the GTPase family.
    DOI:  https://doi.org/10.1038/s41467-023-40043-0
  4. Nat Commun. 2023 07 18. 14(1): 4300
      Mitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.3-2.7 Å. The structures show that two loops of p53-DBD penetrate directly into the BH3-binding pocket of BCL-2. Structure-based mutations at the interface impair the p53/BCL-2 interaction. Specifically, the binding sites for p53 and the pro-apoptotic protein Bax in the BCL-2 pocket are mostly identical. In addition, formation of the p53/BCL-2 complex is negatively correlated with the formation of BCL-2 complexes with pro-apoptotic BCL-2 family members. Defects in the p53/BCL-2 interaction attenuate p53-mediated cell apoptosis. Overall, our study provides a structural basis for the interaction between p53 and BCL-2, and suggests a molecular mechanism by which p53 regulates transcription-independent apoptosis by antagonizing the interaction of BCL-2 with pro-apoptotic BCL-2 family members.
    DOI:  https://doi.org/10.1038/s41467-023-40087-2
  5. Sci Adv. 2023 Jul 21. 9(29): eadh3347
      Mutations in the E3 ubiquitin ligase parkin are the most common cause of early-onset Parkinson's disease (PD). Although parkin modulates mitochondrial and endolysosomal homeostasis during cellular stress, whether parkin regulates mitochondrial and lysosomal cross-talk under physiologic conditions remains unresolved. Using transcriptomics, metabolomics and super-resolution microscopy, we identify amino acid metabolism as a disrupted pathway in iPSC-derived dopaminergic neurons from patients with parkin PD. Compared to isogenic controls, parkin mutant neurons exhibit decreased mitochondria-lysosome contacts via destabilization of active Rab7. Subcellular metabolomics in parkin mutant neurons reveals amino acid accumulation in lysosomes and their deficiency in mitochondria. Knockdown of the Rab7 GTPase-activating protein TBC1D15 restores mitochondria-lysosome tethering and ameliorates cellular and subcellular amino acid profiles in parkin mutant neurons. Our data thus uncover a function of parkin in promoting mitochondrial and lysosomal amino acid homeostasis through stabilization of mitochondria-lysosome contacts and suggest that modulation of interorganelle contacts may serve as a potential target for ameliorating amino acid dyshomeostasis in disease.
    DOI:  https://doi.org/10.1126/sciadv.adh3347
  6. Nat Commun. 2023 Jul 21. 14(1): 4404
      Histone H4 lysine 16 acetylation (H4K16ac), governed by the histone acetyltransferase MOF, orchestrates gene expression regulation and chromatin interaction. However, the roles of MOF and H4K16ac in controlling cellular function and regulating mammalian tissue development remain unclear. Here we show that conditional deletion of Mof in the skin, but not Kansl1, causes severe defects in the self-renewal of basal epithelial progenitors, epidermal differentiation, and hair follicle growth, resulting in barrier defects and perinatal lethality. MOF-regulated genes are highly enriched for essential functions in the mitochondria and cilia. Genetic deletion of Uqcrq, an essential subunit for the electron transport chain (ETC) Complex III, in the skin, recapitulates the defects in epidermal differentiation and hair follicle growth observed in MOF knockout mouse. Together, this study reveals the requirement of MOF-mediated epigenetic mechanism for regulating mitochondrial and ciliary gene expression and underscores the important function of the MOF/ETC axis for mammalian skin development.
    DOI:  https://doi.org/10.1038/s41467-023-40108-0
  7. Nat Commun. 2023 07 19. 14(1): 4360
      Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.
    DOI:  https://doi.org/10.1038/s41467-023-40084-5
  8. J Clin Invest. 2023 07 17. pii: e171965. [Epub ahead of print]133(14):
      Hypertrophic cardiomyopathy and pathological cardiac hypertrophy are characterized by mitochondrial structural and functional abnormalities. In this issue of the JCI, Zhuang et al. discovered 1-deoxynojirimycin (DNJ) through a screen of mitochondrially targeted compounds. The authors described the effects of DNJ in restoring mitochondria and preventing cardiac myocyte hypertrophy in cellular models carrying a mutant mitochondrial gene, MT-RNR2, which is causally implicated in familial hypertrophic cardiomyopathy. DNJ worked via stabilization of the mitochondrial inner-membrane GTPase OPA1 and other, hitherto unknown, mechanisms to preserve mitochondrial crista and respiratory chain components. The discovery is likely to spur development of a class of therapeutics that restore mitochondrial health to prevent cardiomyopathy and heart failure.
    DOI:  https://doi.org/10.1172/JCI171965
  9. PLoS Pathog. 2023 Jul 17. 19(7): e1011548
      Recently, viruses have been shown to regulate selective autophagy for productive infections. For instance, human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), activates selective autophagy of mitochondria, termed mitophagy, thereby inhibiting antiviral innate immune responses during lytic infection in host cells. We previously demonstrated that HHV-8 viral interferon regulatory factor 1 (vIRF-1) plays a crucial role in lytic replication-activated mitophagy by interacting with cellular mitophagic proteins, including NIX and TUFM. However, the precise molecular mechanisms by which these interactions lead to mitophagy activation remain to be determined. Here, we show that vIRF-1 binds directly to mammalian autophagy-related gene 8 (ATG8) proteins, preferentially GABARAPL1 in infected cells, in an LC3-interacting region (LIR)-independent manner. Accordingly, we identified key residues in vIRF-1 and GABARAPL1 required for mutual interaction and demonstrated that the interaction is essential for mitophagy activation and HHV-8 productive replication. Interestingly, the mitophagy receptor NIX promotes vIRF-1-GABARAPL1 interaction, and NIX/vIRF-1-induced mitophagy is significantly inhibited in GABARAPL1-deficient cells. Moreover, a vIRF-1 variant defective in GABARAPL1 binding substantially loses the ability to induce vIRF-1/NIX-induced mitophagy. These results suggest that NIX supports vIRF-1 activity as a mitophagy mediator. In addition, we found that NIX promotes vIRF-1 aggregation and stabilizes aggregated vIRF-1. Together, these findings indicate that vIRF-1 plays a role as a viral mitophagy mediator that can be activated by a cellular mitophagy receptor.
    DOI:  https://doi.org/10.1371/journal.ppat.1011548
  10. Nat Cell Biol. 2023 Jul 17.
      The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete1, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs. 2,3) regulates this balance in favour of mtDNA repair by localizing to mitochondria and interfering with the assembly of the mitochondrial pre-initiation transcription complex between HMG-5/TFAM and RPOM-1/mtRNAP. ATFS-1-mediated transcriptional inhibition decreases age-dependent mtDNA molecular damage through the DNA glycosylase NTH-1/NTH1, as well as the helicase TWNK-1/TWNK, resulting in an enhancement in the functional longevity of cells and protection against decline in animal behaviour caused by targeted and severe mtDNA damage. Together, our findings reveal that ATFS-1 acts as a molecular focal point for the control of balance between genome expression and maintenance in the mitochondria.
    DOI:  https://doi.org/10.1038/s41556-023-01192-y
  11. J Biol Chem. 2023 Jul 18. pii: S0021-9258(23)02101-4. [Epub ahead of print] 105073
      APOBEC3A is an antiviral DNA deaminase often induced by virus infection. APOBEC3A is also a source of cancer mutation in viral and non-viral tumor types. It is therefore critical to identify factors responsible for APOBEC3A upregulation. Here, we test the hypothesis that leaked mitochondrial (mt) double-stranded (ds)RNA is recognized as foreign nucleic acid, which triggers innate immune signaling, APOBEC3A upregulation, and DNA damage. Knockdown of an enzyme responsible for degrading mtdsRNA, the exoribonuclease polynucleotide phosphorylase (PNPase), results in mtdsRNA leakage into the cytosol and induction of APOBEC3A expression. APOBEC3A upregulation by cytoplasmic mtdsRNA requires RIG-I, MAVS, and STAT2 and is likely part of a broader type I interferon response. Importantly, although mtdsRNA-induced APOBEC3A appears cytoplasmic by subcellular fractionation experiments, its induction triggers an overt DNA damage response characterized by elevated nuclear γ-H2AX staining. Thus, mtdsRNA dysregulation may induce APOBEC3A and contribute to observed genomic instability and mutation signatures in cancer.
    Keywords:  APOBEC3A; DNA damage response; cancer mutagenesis; innate immune signaling; mitochondrial dsRNA
    DOI:  https://doi.org/10.1016/j.jbc.2023.105073
  12. Cell Death Dis. 2023 Jul 19. 14(7): 448
      Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.
    DOI:  https://doi.org/10.1038/s41419-023-05988-6
  13. Elife. 2023 07 20. pii: RP85596. [Epub ahead of print]12
      The degradation of sperm-borne mitochondria after fertilization is a conserved event. This process known as post-fertilization sperm mitophagy, ensures exclusively maternal inheritance of the mitochondria-harbored mitochondrial DNA genome. This mitochondrial degradation is in part carried out by the ubiquitin-proteasome system. In mammals, ubiquitin-binding pro-autophagic receptors such as SQSTM1 and GABARAP have also been shown to contribute to sperm mitophagy. These systems work in concert to ensure the timely degradation of the sperm-borne mitochondria after fertilization. We hypothesize that other receptors, cofactors, and substrates are involved in post-fertilization mitophagy. Mass spectrometry was used in conjunction with a porcine cell-free system to identify other autophagic cofactors involved in post-fertilization sperm mitophagy. This porcine cell-free system is able to recapitulate early fertilization proteomic interactions. Altogether, 185 proteins were identified as statistically different between control and cell-free-treated spermatozoa. Six of these proteins were further investigated, including MVP, PSMG2, PSMA3, FUNDC2, SAMM50, and BAG5. These proteins were phenotyped using porcine in vitro fertilization, cell imaging, proteomics, and the porcine cell-free system. The present data confirms the involvement of known mitophagy determinants in the regulation of mitochondrial inheritance and provides a master list of candidate mitophagy co-factors to validate in the future hypothesis-driven studies.
    Keywords:  Sus scrofa; cell biology
    DOI:  https://doi.org/10.7554/eLife.85596
  14. Autophagy. 2023 Jul 16.
      Mitophagy is a selective form of autophagy that targets dysfunctional or superfluous mitochondria for degradation. During mitophagy, specific selective autophagy receptors (SARs) mark a portion of mitochondria to recruit the autophagy-related (Atg) machinery and nucleate a phagophore. The phagophore expands and surrounds the mitochondrial cargo, forming an autophagosome. Fission plays a crucial role in separating the targeted portion of mitochondria from the main body to sequester it within the autophagosome. Our recent study, utilizing fission and budding yeasts as model systems, has identified Atg44 as a mitochondrial fission factor that generates mitochondrial fragments suitable for phagophore engulfment. Atg44 resides in the mitochondrial intermembrane space (IMS) and interacts with lipid membranes, with the capacity of mediating membrane fragility and fission. Based on our findings, we propose the term mitofissin to refer to Atg44 and its homologous proteins, which might participate in diverse cellular processes requiring membrane remodeling across various species.
    Keywords:  Atg44; autophagy; mitochondria; mitochondrial fission; mitofissin; mitophagy; yeast
    DOI:  https://doi.org/10.1080/15548627.2023.2237343