J Biol Chem. 2023 Sep 28. pii: S0021-9258(23)02331-1. [Epub ahead of print] 105303
Mitochondrial fission protein 1 (FIS1) is conserved in all eukaryotes, yet its function in metazoans is thought divergent from lower eukaryotes like fungi. To address this discrepancy, structure-based sequence alignments revealed a conserved but non-canonical three-residue insert (Ser-X-X) in a turn of FIS1, suggesting a conserved function. In vertebrate FIS1, this insert is serine (S45), lysine (K46), and tyrosine (Y47). To determine the biological role of the "SKY insert" in vertebrates, three variants were evaluated for their fold and tested in HCT116 cells for altered mitochondrial morphology and recruitment of effectors, DRP1 and TBC1D15. Substitution of the SKY insert with three alanine residues (AAA) or deletion of the insert (ΔSKY) did not substantially alter the fold or thermal stability of the protein. Replacing SKY with a canonical turn (ΔSKYD49G) introduced significant conformational heterogeneity by NMR that was removed upon deletion of a known regulatory region, the FIS1 arm. Expression of AAA fragmented mitochondria into perinuclear clumps associated with increased mitochondrial DRP1 similar to the wild-type protein. In contrast, the expression of ΔSKY variants led to elongated mitochondrial networks and reduced mitochondrial DRP1 by colocalization analysis, although DRP1 coimmunoprecipitates were highly enriched with ΔSKY variants. Co-expression of YFP-TBC1D15 with ΔSKY variants rescued mitochondrial morphology, despite a reduced ability to drive YFP-TBC1D15 into punctate structures that is found upon co-expression with wildtype FIS1 or the AAA variant. In support YFP-TBC1D15 coimmunoprecipitates were poorly enriched with ΔSKY variants. Co-expression of YFP-TBC1D15 also revealed a gain of function phenotype with the AAA variant compared to wildtype. Collectively these results show that FIS1 can be modulated by conserved residues, thus supporting a unifying model whereby FIS1 activity is effectively governed by intramolecular interactions between the regulatory FIS1 arm and an S-X-X insert that is conserved across eukaryotes.
Keywords: Mitochondria; dynamin; fission; mitophagy; nuclear magnetic resonance (NMR); organelle dynamic; peroxisome; protein motif; repeat proteins; tetratricopeptide repeat