bims-mitdyn Biomed News
on Mitochondrial dynamics: mechanisms
Issue of 2024–08–25
twelve papers selected by
Edmond Chan, Queen’s University, School of Medicine



  1. Nature. 2024 Aug 21.
      Mitochondrial membranes define distinct structural and functional compartments. Cristae of the inner mitochondrial membrane (IMM) function as independent bioenergetic units that undergo rapid and transient remodelling, but the significance of this compartmentalized organization is unknown1. Using super-resolution microscopy, here we show that cytosolic IMM vesicles, devoid of outer mitochondrial membrane or mitochondrial matrix, are formed during resting state. These vesicles derived from the IMM (VDIMs) are formed by IMM herniation through pores formed by voltage-dependent anion channel 1 in the outer mitochondrial membrane. Live-cell imaging showed that lysosomes in proximity to mitochondria engulfed the herniating IMM and, aided by the endosomal sorting complex required for transport machinery, led to the formation of VDIMs in a microautophagy-like process, sparing the remainder of the organelle. VDIM formation was enhanced in mitochondria undergoing oxidative stress, suggesting their potential role in maintenance of mitochondrial function. Furthermore, the formation of VDIMs required calcium release by the reactive oxygen species-activated, lysosomal calcium channel, transient receptor potential mucolipin 1, showing an interorganelle communication pathway for maintenance of mitochondrial homeostasis. Thus, IMM compartmentalization could allow for the selective removal of damaged IMM sections via VDIMs, which should protect mitochondria from localized injury. Our findings show a new pathway of intramitochondrial quality control.
    DOI:  https://doi.org/10.1038/s41586-024-07835-w
  2. Nature. 2024 Aug;632(8027): 987-988
      
    Keywords:  Biochemistry; Cell biology
    DOI:  https://doi.org/10.1038/d41586-024-02528-w
  3. Cell Metab. 2024 Aug 13. pii: S1550-4131(24)00287-0. [Epub ahead of print]
      To examine the roles of mitochondrial calcium Ca2+ ([Ca2+]mt) and cytosolic Ca2+ ([Ca2+]cyt) in the regulation of hepatic mitochondrial fat oxidation, we studied a liver-specific mitochondrial calcium uniporter knockout (MCU KO) mouse model with reduced [Ca2+]mt and increased [Ca2+]cyt content. Despite decreased [Ca2+]mt, deletion of hepatic MCU increased rates of isocitrate dehydrogenase flux, α-ketoglutarate dehydrogenase flux, and succinate dehydrogenase flux in vivo. Rates of [14C16]palmitate oxidation and intrahepatic lipolysis were increased in MCU KO liver slices, which led to decreased hepatic triacylglycerol content. These effects were recapitulated with activation of CAMKII and abrogated with CAMKII knockdown, demonstrating that [Ca2+]cyt activation of CAMKII may be the primary mechanism by which MCU deletion promotes increased hepatic mitochondrial oxidation. Together, these data demonstrate that hepatic mitochondrial oxidation can be dissociated from [Ca2+]mt and reveal a key role for [Ca2+]cyt in the regulation of hepatic fat mitochondrial oxidation, intrahepatic lipolysis, gluconeogenesis, and lipid accumulation.
    Keywords:  CAMKII; Q-Flux; calcium; fat oxidation; glucose oxidation; isocitrate dehydrogenase flux; metabolic dysfunction-associated steatotic liver disease; mitochondria; mitochondrial calcium uniporter; succinate dehydrogenase flux; tricarboxylic acid cycle; type 2 diabetes; α-ketoglutarate dehydrogenase flux
    DOI:  https://doi.org/10.1016/j.cmet.2024.07.016
  4. Proc Natl Acad Sci U S A. 2024 Aug 27. 121(35): e2402491121
      Activating Ca2+-sensitive enzymes of oxidative metabolism while preventing calcium overload that leads to mitochondrial and cellular injury requires dynamic control of mitochondrial Ca2+ uptake. This is ensured by the mitochondrial calcium uptake (MICU)1/2 proteins that gate the pore of the mitochondrial calcium uniporter (mtCU). MICU1 is relatively sparse in the heart, and recent studies claimed the mammalian heart lacks MICU1 gating of mtCU. However, genetic models have not been tested. We find that MICU1 is present in a complex with MCU in nonfailing human hearts. Furthermore, using murine genetic models and pharmacology, we show that MICU1 and MICU2 control cardiac mitochondrial Ca2+ influx, and that MICU1 deletion alters cardiomyocyte mitochondrial calcium signaling and energy metabolism. MICU1 loss causes substantial compensatory changes in the mtCU composition and abundance, increased turnover of essential MCU regulator (EMRE) early on and, later, of MCU, that limit mitochondrial Ca2+ uptake and allow cell survival. Thus, both the primary consequences of MICU1 loss and the ensuing robust compensation highlight MICU1's relevance in the beating heart.
    Keywords:  MICU1; MICU2; calcium; cardiomyocyte; mitochondrial calcium uniporter gating
    DOI:  https://doi.org/10.1073/pnas.2402491121
  5. iScience. 2024 Aug 16. 27(8): 110510
      The physical connection between mitochondria and endoplasmic reticulum (ER) is an essential signaling hub to ensure organelle and cellular functions. In skeletal muscle, ER-mitochondria calcium (Ca2+) signaling is crucial to maintain cellular homeostasis during physical activity. High expression of BCL2L13, a member of the BCL-2 family, was suggested as an adaptive response in endurance-trained human subjects. In adult zebrafish, we found that the loss of Bcl2l13 impairs skeletal muscle structure and function. Ca2+ signaling is altered in Bcl2l13 knockout animals and mitochondrial complexes activity is decreased. Organelle fractioning in mammalian cells shows BCL2L13 at mitochondria, ER, and mitochondria-associated membranes. ER-mitochondria contact sites number is not modified by BCL2L13 modulation, but knockdown of BCL2L13 in C2C12 cells changes cytosolic Ca2+ release and mitochondrial Ca2+ uptake. This suggests that BCL2L13 interaction with mitochondria and ER, and its role in Ca2+ signaling, contributes to proper skeletal muscle function.
    Keywords:  cell biology; pharmacology
    DOI:  https://doi.org/10.1016/j.isci.2024.110510
  6. Cell Metab. 2024 Aug 16. pii: S1550-4131(24)00291-2. [Epub ahead of print]
      In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
    Keywords:  6mA; ROS; aging; epigenetics; heteroplasmy; lifespan; mitochondria; mitochondrial genome; mtDNA; oxidative stress
    DOI:  https://doi.org/10.1016/j.cmet.2024.07.020
  7. Nat Commun. 2024 Aug 20. 15(1): 7134
      The mechanism by which RNAP selects cognate substrates and discriminates between deoxy and ribonucleotides is of fundamental importance to the fidelity of transcription. Here, we present cryo-EM structures of human mitochondrial transcription elongation complexes that reveal substrate ATP bound in Entry and Insertion Sites. In the Entry Site, the substrate binds along the O helix of the fingers domain of mtRNAP but does not interact with the templating DNA base. Interactions between RNAP and the triphosphate moiety of the NTP in the Entry Site ensure discrimination against nucleosides and their diphosphate and monophosphate derivatives but not against non-cognate rNTPs and dNTPs. Closing of the fingers domain over the catalytic site results in delivery of both the templating DNA base and the substrate into the Insertion Site and recruitment of the catalytic magnesium ions. The cryo-EM data also reveal a conformation adopted by mtRNAP to reject a non-cognate substrate from its active site. Our findings establish a structural basis for substrate binding and suggest a unified mechanism of NTP selection for single-subunit RNAPs.
    DOI:  https://doi.org/10.1038/s41467-024-50817-9
  8. Elife. 2024 Aug 19. pii: e97027. [Epub ahead of print]13
      Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila orthologue of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.
    Keywords:  D. melanogaster; cell biology; human; mouse; neuroscience
    DOI:  https://doi.org/10.7554/eLife.97027
  9. Elife. 2024 Aug 23. pii: RP87880. [Epub ahead of print]12
      Autosomal dominant optic atrophy (DOA) is a progressive form of blindness caused by degeneration of retinal ganglion cells and their axons, mainly caused by mutations in the OPA1 mitochondrial dynamin like GTPase (OPA1) gene. OPA1 encodes a dynamin-like GTPase present in the mitochondrial inner membrane. When associated with OPA1 mutations, DOA can present not only ocular symptoms but also multi-organ symptoms (DOA plus). DOA plus often results from point mutations in the GTPase domain, which are assumed to have dominant-negative effects. However, the presence of mutations in the GTPase domain does not always result in DOA plus. Therefore, an experimental system to distinguish between DOA and DOA plus is needed. In this study, we found that loss-of-function mutations of the dOPA1 gene in Drosophila can imitate the pathology of optic nerve degeneration observed in DOA. We successfully rescued this degeneration by expressing the human OPA1 (hOPA1) gene, indicating that hOPA1 is functionally interchangeable with dOPA1 in the fly system. However, mutations previously identified did not ameliorate the dOPA1 deficiency phenotype. By expressing both WT and DOA plus mutant hOPA1 forms in the optic nerve of dOPA1 mutants, we observed that DOA plus mutations suppressed the rescue, facilitating the distinction between loss-of-function and dominant-negative mutations in hOPA1. This fly model aids in distinguishing DOA from DOA plus and guides initial hOPA1 mutation treatment strategies.
    Keywords:  D. melanogaster; Drosophila; OPA1; axonal degeneration; dominant optic atrophy; medicine
    DOI:  https://doi.org/10.7554/eLife.87880
  10. Autophagy. 2024 Aug 23.
      Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.
    Keywords:  ATG16L1; Atg8; ULK1; nanobody; targeted organelle degradation
    DOI:  https://doi.org/10.1080/15548627.2024.2395149
  11. ACS Synth Biol. 2024 Aug 20.
      Mitochondria-endoplasmic reticulum contact sites (MERCS) serve as hotspots for important cellular processes, including calcium homeostasis, phospholipid homeostasis, mitochondria dynamics, and mitochondrial quality control. MERCS reporters based on complementation of green fluorescent proteins (GFP) fragments have been designed to visualize MERCS in real-time, but we find that they do not accurately respond to changes in MERCS content. Here, we utilize split LacZ complementing fragments to develop the first MERCS reporter system (termed SpLacZ-MERCS) that continuously integrates the MERCS information within a cell and generates a fluorescent output. Our system exhibits good organelle targeting, no artifactual tethering, and effective, dynamic tracking of the MERCS level in single cells. The SpLacZ-MERCS reporter was validated by drug treatments and genetic perturbations known to affect mitochondria-ER contacts. The signal-integrating nature of SpLacZ-MERCS may enable systematic identification of genes and drugs that regulate mitochondria-ER interactions. Our successful application of the split LacZ complementation strategy to study MERCS may be extended to study other forms of interorganellar crosstalk.
    Keywords:  contact sites; endoplasmic reticulum; mitochondria; organelle interactions
    DOI:  https://doi.org/10.1021/acssynbio.4c00098