bims-mitlys Biomed News
on Mitochondria and Lysosomes
Issue of 2021‒10‒10
six papers selected by
Nicoletta Plotegher
University of Padova


  1. Bioessays. 2021 Oct 07. e2100168
      PTEN-induced kinase 1 (PINK1) is a Parkinson's disease gene that acts as a sensor for mitochondrial damage. Its best understood role involves phosphorylating ubiquitin and the E3 ligase Parkin (PRKN) to trigger a ubiquitylation cascade that results in selective clearance of damaged mitochondria through mitophagy. Here we focus on other physiological roles of PINK1. Some of these also lie upstream of Parkin but others represent autonomous functions, for which alternative substrates have been identified. We argue that PINK1 orchestrates a multi-arm response to mitochondrial damage that impacts on mitochondrial architecture and biogenesis, calcium handling, transcription and translation. We further discuss a role for PINK1 in immune signalling co-ordinated at mitochondria and consider the significance of a freely diffusible cleavage product, that is constitutively generated and degraded under basal conditions.
    Keywords:  ISR; PINK1; Parkin; Parkinson's disease; mitochondria; mitochondrial quality control; mitophagy; stress response
    DOI:  https://doi.org/10.1002/bies.202100168
  2. J Cell Sci. 2021 Oct 01. pii: jcs240465. [Epub ahead of print]134(19):
      Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
    Keywords:  Mitochondria quality control; Neurodegeneration; PRKN; Park2; Park6
    DOI:  https://doi.org/10.1242/jcs.240465
  3. J Biol Chem. 2021 Oct 05. pii: S0021-9258(21)01082-6. [Epub ahead of print] 101279
      Mitochondria are essential organelles that carry out a number of pivotal metabolic processes and maintain cellular homeostasis. Mitochondrial dysfunction caused by various stresses is associated with many diseases such as type 2 diabetes, obesity, cancer, heart failure, neurodegenerative disorders, and aging. Therefore, it is important to understand the stimuli that induce mitochondrial stress. However, broad analysis of mitochondrial stress has not been carried out to date. Here, we present a set of fluorescent tools, called mito-Pain (mitochondrial PINK1 accumulation index), which enables the labeling of stressed mitochondria. Mito-Pain utilizes PINK1 stabilization on mitochondria and quantifies mitochondrial stress levels by comparison with PINK1-GFP, which is stabilized under mitochondrial stress, and RFP-Omp25, which is constitutively localized on mitochondria. To identify compounds that induce mitochondrial stress, we screened a library of 3374 compounds using mito-Pain and identified 57 compounds as mitochondrial stress inducers. Furthermore, we classified each compound into several categories based on mitochondrial response: depolarization, mitochondrial morphology, or Parkin recruitment. Parkin recruitment to mitochondria was often associated with mitochondrial depolarization and aggregation, suggesting that Parkin is recruited to heavily damaged mitochondria. In addition, many of the compounds led to various mitochondrial morphological changes, including fragmentation, aggregation, elongation, and swelling, with or without Parkin recruitment or mitochondrial depolarization. We also found that several compounds induced an ectopic response of Parkin, leading to the formation of cytosolic puncta dependent on PINK1. Thus, mito-Pain enables the detection of stressed mitochondria under a wide variety of conditions and provide insights into mitochondrial quality control systems.
    Keywords:  PTEN‐induced putative kinase 1 (PINK1); Parkin; mitochondria; mitochondrial membrane potential; mitochondrial sensor; mitochondrial stress
    DOI:  https://doi.org/10.1016/j.jbc.2021.101279
  4. Cell Death Dis. 2021 Oct 08. 12(10): 919
      The mitochondrial uncoupling protein 2 (UCP2) plays a protective function in the vascular disease of both animal models and humans. UCP2 downregulation upon high-salt feeding favors vascular dysfunction in knock-out mice, and accelerates cerebrovascular and renal damage in the stroke-prone spontaneously hypertensive rat. Overexpression of UCP2 counteracts the negative effects of high-salt feeding in both animal models. We tested in vitro the ability of UCP2 to stimulate autophagy and mitophagy as a mechanism mediating its protective effects upon high-salt exposure in endothelial and renal tubular cells. UCP2 silencing reduced autophagy and mitophagy, whereas the opposite was true upon UCP2 overexpression. High-salt exposure increased level of reactive oxygen species (ROS), UCP2, autophagy and autophagic flux in both endothelial and renal tubular cells. In contrast, high-salt was unable to induce autophagy and autophagic flux in UCP2-silenced cells, concomitantly with excessive ROS accumulation. The addition of an autophagy inducer, Tat-Beclin 1, rescued the viability of UCP2-silenced cells even when exposed to high-salt. In summary, UCP2 mediated the interaction between high-salt-induced oxidative stress and autophagy to preserve viability of both endothelial and renal tubular cells. In the presence of excessive ROS accumulation (achieved upon UCP2 silencing and high-salt exposure of silenced cells) autophagy was turned off. In this condition, an exogenous autophagy inducer rescued the cellular damage induced by excess ROS level. Our data confirm the protective role of UCP2 toward high-salt-induced vascular and renal injury, and they underscore the role of autophagy/mitophagy as a mechanism counteracting the high-salt-induced oxidative stress damage.
    DOI:  https://doi.org/10.1038/s41419-021-04188-4
  5. Nature. 2021 Oct 06.
    COSEM Project Team
      Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM)1. We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.
    DOI:  https://doi.org/10.1038/s41586-021-03977-3
  6. J Ophthalmol. 2021 ;2021 5586659
      We aimed to explore the effect of N-retinylidene-N-retinylethanolamine (A2E) on the uptake and release of calcium in lysosomes and mitochondria by establishing a model of human retinal pigment epithelial (RPE) cell injury induced by exposure to blue light. Primary human RPE cells were cultured from passages 4 to 6 and exposed to blue light at an intensity of 2000 ± 500 lux for 6 hours. After blue light exposure, the culture was maintained for 24 hours. A2E at a final concentration of 25 μM was added to the culture 2 hours before light exposure, and nifedipine at a final concentration of 10-4 M was added 1 hour before light exposure. The levels of Ca2+ in the cytosol (CaTM/2AM), mitochondria (Rhod/2AM), and lysosomes (LysoTracker Red and Fluo-3/AM) were determined. In order to measure the calcium levels in the different organelles, RPE were imaged using a laser scanning confocal microscope. Moreover, changes in the mitochondrial membrane potential were detected by flow cytometry analysis of JC-1-stained cells. The obtained results revealed that blue light illumination increased the calcium fluorescence intensity in the cytoplasm, mitochondria, and lysosomes of human RPE cells when compared with the control cells (P < 0.05). After A2E treatment, the fluorescence intensity of the calcium in the cytoplasm was further increased (P < 0.05), while that in the mitochondria and lysosomes decreased (P < 0.05). In addition, we observed that nifedipine reduced the fluorescence intensity of calcium in the RPE cells. Our results also showed that the mitochondrial membrane potential in the RPE treated with blue light and A2E was lower than that in the control, blue light, and A2E-treated cells (P < 0.05). Blue light increased calcium levels in the cytoplasm, lysosomes, and mitochondria of RPE cells. A2E damages the lysosomal and mitochondrial membranes, resulting in calcium release into the cytoplasm. Finally, our results demonstrated that both blue light and A2E treatments reduced mitochondrial membrane potential, increasing cytosolic Ca2+ levels, which can contribute to the activation of RPE death.
    DOI:  https://doi.org/10.1155/2021/5586659