bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2021‒12‒05
twenty-one papers selected by
Dario Brunetti
Fondazione IRCCS Istituto Neurologico


  1. Brain. 2021 Nov 29. pii: awab426. [Epub ahead of print]
      Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases (MDs). With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (CI) induce isolated CI deficiency and Leigh syndrome (LS). This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA (nDNA)-encoded NDUFS4 gene, encoding the NADH: Ubiquinone oxidoreductase subunit S4 (NDUFS4) of CI induce "mitochondrial complex I deficiency, nuclear type 1" (MC1DN1) and LS in pediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the LS pathomechanism and intervention testing. Here, we review and discuss the role of CI and NDUFS4 mutations in human MD, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/LS pathomechanism and its therapeutic targeting.
    Keywords:  Leigh syndrome; intervention; mouse model; pathomechanism
    DOI:  https://doi.org/10.1093/brain/awab426
  2. Nat Rev Genet. 2021 Dec 02.
      Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
    DOI:  https://doi.org/10.1038/s41576-021-00432-x
  3. Neuropediatrics. 2021 Dec 01.
      Variants in SURF1, encoding an assembly factor of mitochondrial respiratory chain complex IV, cause Leigh syndrome (LS) and Charcot-Marie-Tooth type 4K in children and young adolescents. Magnetic resonance imaging (MRI) appearance of enlarged nerve roots with postcontrastographic enhancement is a distinctive feature of hypertrophic neuropathy caused by onion-bulb formation and it has rarely been described in mitochondrial diseases (MDs). Spinal nerve roots abnormalities on MRI are novel findings in LS associated with variants in SURF1. Here we report detailed neuroradiological and neurophysiologic findings in a child with LS and demyelinating neuropathy SURF1-related. Our case underlines the potential contributive role of spinal neuroimaging together with neurophysiological examination to identify the full spectrum of patterns in MDs. It remains to elucidate if these observations remain peculiar of SURF1 variants or potentially detectable in other MDs with peripheral nervous system involvement.
    DOI:  https://doi.org/10.1055/s-0041-1739135
  4. Clin Genet. 2021 Nov 29.
      IMMT gene codes for mitofilin, a mitochondrial inner membrane protein that regulates the morphology of mitochondrial cristae. The phenotype associated with mutations in this gene has not been yet established, but functional studies carried out show that its loss causes a mitochondrial alteration, both in the morphology of the mitochondrial crests and in their function. We present two cousins from an extended highly consanguineous family with developmental encephalopathy, hypotonia, nystagmus due to optic neuropathy. The likely pathogenic homozygous c.895A > G (p.Lys299Glu) variant in the IMMT gene co-segregates with the disease and associates altered mitochondrial cristae observed by electron microscopy.
    Keywords:  IMMT gene; developmental encephalopathy; mitochondrial disorder; mitofilin complexes; nystagmus; optic neuropathy
    DOI:  https://doi.org/10.1111/cge.14093
  5. Front Mol Biosci. 2021 ;8 767088
      Mitochondria are essential organelles involved in cellular energy production. The inner mitochondrial membrane protein stomatin-like protein 2 (SLP-2) is a member of the SPFH (stomatin, prohibitin, flotilin, and HflK/C) superfamily and binds to the mitochondrial glycerophospholipid cardiolipin, forming cardiolipin-enriched membrane domains to promote the assembly and/or stabilization of protein complexes involved in oxidative phosphorylation. In addition, human SLP-2 anchors a mitochondrial processing complex required for proteolytic regulation of proteins involved in mitochondrial dynamics and quality control. We now show that deletion of the gene encoding the Trypanosoma brucei homolog TbSlp2 has no effect on respiratory protein complex stability and mitochondrial functions under normal culture conditions and is dispensable for growth of T. brucei parasites. In addition, we demonstrate that TbSlp2 binds to the metalloprotease TbYme1 and together they form a large mitochondrial protein complex. The two proteins negatively regulate each other's expression levels by accelerating protein turnover. Furthermore, we show that TbYme1 plays a role in heat-stress resistance, as TbYme1 knock-out parasites displayed mitochondrial fragmentation and loss of viability when cultured at elevated temperatures. Unbiased interaction studies uncovered putative TbYme1 substrates, some of which were differentially affected by the absence of TbYme1. Our results support emerging evidence for the presence of mitochondrial quality control pathways in this ancient eukaryote.
    Keywords:  Yme1; cardiolipin; membrane proteins; mitochondria; mitochondrial stress response; prohibitin; stomatin-like protein 2; trypanosoma
    DOI:  https://doi.org/10.3389/fmolb.2021.767088
  6. DNA Cell Biol. 2021 Dec 01.
      Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
    Keywords:  mitochondria; mitochondrial dynamics; mitophagy; pain; peripheral neuropathy
    DOI:  https://doi.org/10.1089/dna.2021.0529
  7. Open Biol. 2021 Dec;11(12): 210238
      Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
    Keywords:  ATP synthase; MICOS; Mgm1; Saccharomyces cerevisiae; cristae; mitochondrial lipids
    DOI:  https://doi.org/10.1098/rsob.210238
  8. Trends Neurosci. 2021 Nov 29. pii: S0166-2236(21)00214-9. [Epub ahead of print]
      Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.
    Keywords:  Parkinson’s disease; SARM1; Wallerian degeneration; axon degeneration; mitochondrial dysfunction; programmed axon death
    DOI:  https://doi.org/10.1016/j.tins.2021.10.014
  9. Clin Neurol Neurosurg. 2021 Nov 20. pii: S0303-8467(21)00568-0. [Epub ahead of print]212 107039
      Isolated deficiency of complex II is a rare inborn error of metabolism, accounting for approximately 2% of mitochondrial diseases. Mitochondrial complex II deficiency is predominantly seen in cases with bi-allelic SDHA mutations. To our knowledge, only 11 patients and five pathogenic variants have been reported for the SDHB gene. Our patient had a severe clinical presentation with seizures and sepsis, and died at the age of 2 months. Muscle biopsy analysis was compatible with mitochondrial myopathy with complex II deficiency. The family was given a molecular diagnosis for their child 2 years after his death via a clinical exome test of a frozen muscle biopsy specimen and a novel homozygous missense variant c.592 A>G (p.Ser198Gly) in SDHB gene was detected by next-generation sequencing. Here, we present another patient with a novel homozygous SDHB variant causing severe complex II deficiency and early death.
    Keywords:  Mitochondrial complex II deficiency; Mitochondrial diseases; Next-Generation Sequencing; SDHB
    DOI:  https://doi.org/10.1016/j.clineuro.2021.107039
  10. Nucleic Acids Res. 2021 Nov 29. pii: gkab1179. [Epub ahead of print]
      Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.
    DOI:  https://doi.org/10.1093/nar/gkab1179
  11. Exp Gerontol. 2021 Nov 30. pii: S0531-5565(21)00430-7. [Epub ahead of print] 111648
      PURPOSE: Exercise helps improve mitochondrial function to combat sarcopenia. Certain parts of the mitochondrial respiratory chain complex can form a higher-order structure called "supercomplex" to reduce the production of reactive oxygen species and improve muscle mass. The effect of exercise on the assembly of the mitochondrial supercomplex is still unclear. The aim of this study was to investigate the effects of long-term high-intensity interval training (HIIT) on mitochondrial biogenesis, mitophagy, and mitochondrial supercomplexes (mitoSCs) assembly in aging soleus muscle.METHODS: Female Sprague-Dawley rats (n = 36) were randomly divided into four groups: young sedentary (Y-SED, 8 months old, n = 12), old sedentary (O-SED, 26 months old, n = 12), moderate-intensity continuous training (MICT, from 18 to 26 months old, n = 12), and HIIT (from 18 to 26 months old, n = 12). Rats in the MICT and HIIT groups were subjected to an 8-month training program. Real-time fluorescent quantitative polymerase chain reaction was used to measure the expression of the antioxidative factors, inflammatory factors, and mitochondrial fusion- and division-related genes. Western blotting was used to detect the expression of mitochondrial biogenesis and mitophagy markers and AMP-activated protein kinase (AMPK) pathway proteins. Enzyme-linked immunosorbent assays were used to determine serum irisin contents. Blue native polyacrylamide gel electrophoresis was used to assess the formation of mitochondrial supercomplexes.
    RESULTS: Compared with the Y-SED group, the soleus muscle and mitochondria in the O-SED group showed reduced expression of mitophagy- and mitochondrial biogenesis-related proteins. In the HIIT group, the expression of autophagy-related proteins in the soleus muscle and mitochondria was significantly increased compared with that in the MICT group. Serum irisin and mitochondrial fusion protein levels significantly decreased with age. Superoxide dismutase 2 protein levels and AMPK pathway protein expression were significantly increased in the HIIT group compared with those in the other groups. Additionally, the expression levels of mitoSCs and the mRNA levels of interleukin-15 and optical atrophy 1 increased in the HIIT group compared with that in the MICT group.
    CONCLUSION: Compared with MICT, HIIT activated the AMPK pathway to upregulate mitochondrial biogenesis- and mitophagy-related proteins, and promote the assembly and formation of mitoSCs to improve the mitochondrial function of aging soleus muscles.
    Keywords:  AMPK pathway; High-intensity interval training, aging; Mitochondrial supercomplex; Mitophagy
    DOI:  https://doi.org/10.1016/j.exger.2021.111648
  12. Nat Commun. 2021 Dec 03. 12(1): 7056
      Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.
    DOI:  https://doi.org/10.1038/s41467-021-27153-3
  13. Mol Cell. 2021 Nov 19. pii: S1097-2765(21)00954-0. [Epub ahead of print]
      Most mitochondrial proteins are translated in the cytosol and imported into mitochondria. Mutations in the mitochondrial protein import machinery cause human pathologies. However, a lack of suitable tools to measure protein uptake across the mitochondrial proteome has prevented the identification of specific proteins affected by import perturbation. Here, we introduce mePRODmt, a pulsed-SILAC based proteomics approach that includes a booster signal to increase the sensitivity for mitochondrial proteins selectively, enabling global dynamic analysis of endogenous mitochondrial protein uptake in cells. We applied mePRODmt to determine protein uptake kinetics and examined how inhibitors of mitochondrial import machineries affect protein uptake. Monitoring changes in translation and uptake upon mitochondrial membrane depolarization revealed that protein uptake was extensively modulated by the import and translation machineries via activation of the integrated stress response. Strikingly, uptake changes were not uniform, with subsets of proteins being unaffected or decreased due to changes in translation or import capacity.
    Keywords:  SILAC; TMT; disease; integrated stress response; mitochondria; protein translocation; proteomics; proteostasis; respiratory chain complexes; translation
    DOI:  https://doi.org/10.1016/j.molcel.2021.11.004
  14. Mol Cell. 2021 Dec 02. pii: S1097-2765(21)00978-3. [Epub ahead of print]81(23): 4765-4767
      Schöller et al. (2021) discovered that METTL8, thought of as an mRNA modifier, is a tRNA-specific mitochondrial enzyme important for mitochondrial translation and function. Paradoxically, increased expression of METTL8 is associated with high respiratory rates in pancreatic cancers.
    DOI:  https://doi.org/10.1016/j.molcel.2021.11.009
  15. Aging (Albany NY). 2021 Nov 28. 13(undefined):
      The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats (Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 years, a powerful mitochondrial structure are develop. By the age of 11 years, it become obvious that the mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny).
    Keywords:  aging; electron microscopy; mitochondria; naked mole-rat; neoteny
    DOI:  https://doi.org/10.18632/aging.203720
  16. Antioxid Redox Signal. 2021 Nov 30.
      SIGNIFICANCE: Currently 10-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Amongst various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased ROS production, particularly of mitochondrial origin, are believed to be main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment as well as therapeutic approaches.CRITICAL ISSUES: In this review we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondrial-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation.
    FUTURE DIRECTIONS: Although more systematic research is needed, mitochondrial-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function.
    DOI:  https://doi.org/10.1089/ars.2021.0238
  17. Nat Aging. 2021 Oct;1(10): 870-879
      Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
    DOI:  https://doi.org/10.1038/s43587-021-00121-8
  18. Genetics. 2021 Oct 02. pii: iyab116. [Epub ahead of print]219(2):
      Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation.
    Keywords:  Duplex Sequencing; cytosine deamination; low-frequency variant; metazoan mtDNA; mitochondrial mutation; mutation accumulation; mutation spectra; oxidative damage; oxidized guanine; replication error
    DOI:  https://doi.org/10.1093/genetics/iyab116
  19. J Genet Genomics. 2021 Nov 29. pii: S1673-8527(21)00358-1. [Epub ahead of print]
      Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Of the multiple signaling pathways that regulate metabolism, such as PI3K/AKT, mTOR, AMPK, and sirtuins, mammalian sirtuins also play unique roles in aging. By understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will focus on canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and oxidative stress, calorie restriction and disease.
    Keywords:  Metabolism and aging regulation; Mitochondrial sirtuins; SIRT3; SIRT4; SIRT5; age-related diseases
    DOI:  https://doi.org/10.1016/j.jgg.2021.11.005
  20. Oxid Med Cell Longev. 2021 ;2021 1006636
      Background: Mitochondrial dysfunctions play a pivotal role in cerebral ischemia-reperfusion (I/R) injury. Although mitochondrial transplantation has been recently explored for the treatment of cerebral I/R injury, the underlying mechanisms and fate of transplanted mitochondria are still poorly understood.Methods: Mitochondrial morphology and function were assessed by fluorescent staining, electron microscopy, JC-1, PCR, mitochondrial stress testing, and metabolomics. Therapeutic effects of mitochondria were evaluated by cell viability, reactive oxygen species (ROS), and apoptosis levels in a cellular hypoxia-reoxygenation model. Rat middle cerebral artery occlusion model was applied to assess the mitochondrial therapy in vivo. Transcriptomics was performed to explore the underlying mechanisms. Mitochondrial fate tracking was implemented by a variety of fluorescent labeling methods.
    Results: Neuro-2a (N2a) cell-derived mitochondria had higher mitochondrial membrane potential, more active oxidative respiration capacity, and less mitochondrial DNA copy number. Exogenous mitochondrial transplantation increased cellular viability in an oxygen-dependent manner, decreased ROS and apoptosis levels, improved neurobehavioral deficits, and reduced infarct size. Transcriptomic data showed that the differential gene enrichment pathways are associated with metabolism, especially lipid metabolism. Mitochondrial tracking indicated specific parts of the exogenous mitochondria fused with the mitochondria of the host cell, and others were incorporated into lysosomes. This process occurred at the beginning of internalization and its efficiency is related to intercellular connection.
    Conclusions: Mitochondrial transplantation may attenuate cerebral I/R injury. The mechanism may be related to mitochondrial component separation, altering cellular metabolism, reducing ROS, and apoptosis in an oxygen-dependent manner. The way of isolated mitochondrial transfer into the cell may be related to intercellular connection.
    DOI:  https://doi.org/10.1155/2021/1006636