bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2022–05–08
twenty papers selected by
Dario Brunetti, Fondazione IRCCS Istituto Neurologico



  1. Nat Commun. 2022 May 03. 13(1): 2412
      Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson's disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.
    DOI:  https://doi.org/10.1038/s41467-022-30178-x
  2. Cell Biol Toxicol. 2022 May 04.
      Cells can adjust their mitochondrial morphology by altering the balance between mitochondrial fission and fusion to adapt to stressful conditions. The connection between a chemical perturbation, changes in mitochondrial function, and altered mitochondrial morphology is not well understood. Here, we made use of high-throughput high-content confocal microscopy to assess the effects of distinct classes of oxidative phosphorylation (OXPHOS) complex inhibitors on mitochondrial parameters in a concentration and time resolved manner. Mitochondrial morphology phenotypes were clustered based on machine learning algorithms and mitochondrial integrity patterns were mapped. In parallel, changes in mitochondrial membrane potential (MMP), mitochondrial and cellular ATP levels, and viability were microscopically assessed. We found that inhibition of MMP, mitochondrial ATP production, and oxygen consumption rate (OCR) using sublethal concentrations of complex I and III inhibitors did not trigger mitochondrial fragmentation. Instead, complex V inhibitors that suppressed ATP and OCR but increased MMP provoked a more fragmented mitochondrial morphology. In agreement, complex V but not complex I or III inhibitors triggered proteolytic cleavage of the mitochondrial fusion protein, OPA1. The relation between increased MMP and fragmentation did not extend beyond OXPHOS complex inhibitors: increasing MMP by blocking the mPTP pore did not lead to OPA1 cleavage or mitochondrial fragmentation and the OXPHOS uncoupler FCCP was associated with OPA1 cleavage and MMP reduction. Altogether, our findings connect vital mitochondrial functions and phenotypes in a high-throughput high-content confocal microscopy approach that help understanding of chemical-induced toxicity caused by OXPHOS complex perturbing chemicals.
    Keywords:  ATP; Machine learning; Membrane potential; Mitochondria; Morphology
    DOI:  https://doi.org/10.1007/s10565-022-09712-6
  3. Nat Rev Cardiol. 2022 May 06.
      Mitochondria are organelles involved in the regulation of various important cellular processes, ranging from ATP generation to immune activation. A healthy mitochondrial network is essential for cardiovascular function and adaptation to pathological stressors. Mitochondria undergo fission or fusion in response to various environmental cues, and these dynamic changes are vital for mitochondrial function and health. In particular, mitochondrial fission is closely coordinated with the cell cycle and is linked to changes in mitochondrial respiration and membrane permeability. Another key function of fission is the segregation of damaged mitochondrial components for degradation by mitochondrial autophagy (mitophagy). Mitochondrial fission is induced by the large GTPase dynamin-related protein 1 (DRP1) and is subject to sophisticated regulation. Activation requires various post-translational modifications of DRP1, actin polymerization and the involvement of other organelles such as the endoplasmic reticulum, Golgi apparatus and lysosomes. A decrease in mitochondrial fusion can also shift the balance towards mitochondrial fission. Although mitochondrial fission is necessary for cellular homeostasis, this process is often aberrantly activated in cardiovascular disease. Indeed, strong evidence exists that abnormal mitochondrial fission directly contributes to disease development. In this Review, we compare the physiological and pathophysiological roles of mitochondrial fission and discuss the therapeutic potential of preventing excessive mitochondrial fission in the heart and vasculature.
    DOI:  https://doi.org/10.1038/s41569-022-00703-y
  4. Hum Genome Var. 2022 May 04. 9(1): 12
      Leigh syndrome is the most genetically heterogenous phenotype of mitochondrial disease. We describe a patient with Leigh syndrome whose diagnosis had not been confirmed because of normal metabolic screening results at the initial presentation. Whole-exome sequencing identified pathogenic variants in NARS2, the gene encoding a mitochondrial asparaginyl-tRNA synthetase. One of the biallelic variants was novel. This highlights the essential role of genetic testing for a definite diagnosis of Leigh syndrome.
    DOI:  https://doi.org/10.1038/s41439-022-00191-z
  5. Methods Mol Biol. 2022 ;2429 85-102
      Mitochondrial function and energy metabolism are increasingly recognized not only as regulators of pluripotent stem cell function and fate, but also as critical targets in disease pathogenesis and aging. Therefore across the downstream applications of pluripotent stem cells, including development and disease modeling, drug screening, and cell-based therapies, it is crucial to be able to measure mitochondrial function and metabolism in a high-throughput, real-time and label-free manner. Here we describe the application of Seahorse extracellular flux analysis to measure mitochondrial function in pluripotent stem cells and their derivatives. Specifically, we highlight two assays, the Mitochondrial Stress Test, which quantifies overall mitochondrial function including basal, maximal and ATP-couple oxygen consumption rates, and the Electron Transport Chain Complex Specific assay, that quantifies function of individual complexes within the electron transport chain.
    Keywords:  Differentiation; Embryonic stem cells; Induced pluripotent stem cells; Mitochondrial respiration; Oxidative metabolism; Oxidative phosphorylation
    DOI:  https://doi.org/10.1007/978-1-0716-1979-7_7
  6. Case Rep Genet. 2022 ;2022 4153357
      A curious triad of retinitis pigmentosa, external ophthalmoplegia, and complete heart block was presented by Sayre et al. in 1958. Since then, the disorder named Kearns-Sayre syndrome (KSS) has come to represent patients with mitochondrial DNA deletions presenting before adulthood, primarily with chronic progressive external ophthalmoplegia (CPEO) and pigmentary retinopathy. However, it is increasingly noted that the presentations can well be variable despite similar genetic deletions. Here, we present two cases with identical large-scale mitochondrial DNA deletions but very dissimilar outlook.
    DOI:  https://doi.org/10.1155/2022/4153357
  7. Mitochondrion. 2022 Apr 30. pii: S1567-7249(22)00040-X. [Epub ahead of print]
      Mitochondria, known as the powerhouse of the cell, are at the center of healthy physiology and provide cells with energy in the form of ATP. These unique organelles are also implicated in many pathological conditions affecting a variety of organs in various systems. Recently, mitochondrial transplantation, inspired by mitochondria's endosymbiotic origin, has been attempted as a potential biotherapy in mitigating a variety of pathological conditions. Mitochondrial transplantation consists of the process of isolation, transfer, and uptake of exogenous, intact mitochondria into damaged cells. Here, we discuss mitochondrial transplantation in the context of clinical medicine practiced in neurology, cardiology, pulmonary medicine, and oncology, among others. We outline the role of mitochondria in various pathologies and discuss the state-of-the-art research that potentially form the basis of new therapeutics for the treatment of a variety of diseases due to mitochondrial dysfunction. Lastly, we explore some of the challenges associated with mitochondrial transplantation that must be addressed before mitochondrial transplantation becomes a viable therapeutic option in clinical settings.
    Keywords:  Mitochondrial transplantation; clinical medicine; mitochondrial transfer; mitochondrial transplantation in medicine
    DOI:  https://doi.org/10.1016/j.mito.2022.04.006
  8. STAR Protoc. 2022 Jun 17. 3(2): 101288
      The FusX TALE Based Editor (FusXTBE) is a programmable base editing platform that can introduce specific TC-to-TT variations in the mitochondrial DNA (mtDNA). Here, we provide a protocol describing the synthesis and testing of the FusXTBE plasmids in cultured human cell lines. This tool is designed to be easily modified to work in diverse applications where editing of mitochondrial DNA is desired. For complete details on the use and execution of this protocol, please refer to Sabharwal et al. (2021) and Ma et al. (2016).
    Keywords:  CRISPR; Cell Biology; Genetics; Molecular Biology; Sequencing
    DOI:  https://doi.org/10.1016/j.xpro.2022.101288
  9. Nat Commun. 2022 May 05. 13(1): 2483
      The SLC25 carrier family consists of 53 transporters that shuttle nutrients and co-factors across mitochondrial membranes. The family is highly redundant and their transport activities coupled to metabolic state. Here, we use a pooled, dual CRISPR screening strategy that knocks out pairs of transporters in four metabolic states - glucose, galactose, OXPHOS inhibition, and absence of pyruvate - designed to unmask the inter-dependence of these genes. In total, we screen 63 genes in four metabolic states, corresponding to 2016 single and pair-wise genetic perturbations. We recover 19 gene-by-environment (GxE) interactions and 9 gene-by-gene (GxG) interactions. One GxE interaction hit illustrates that the fitness defect in the mitochondrial folate carrier (SLC25A32) KO cells is genetically buffered in galactose due to a lack of substrate in de novo purine biosynthesis. GxG analysis highlights a buffering interaction between the iron transporter SLC25A37 (A37) and the poorly characterized SLC25A39 (A39). Mitochondrial metabolite profiling, organelle transport assays, and structure-guided mutagenesis identify A39 as critical for mitochondrial glutathione (GSH) import. Functional studies reveal that A39-mediated glutathione homeostasis and A37-mediated mitochondrial iron uptake operate jointly to support mitochondrial OXPHOS. Our work underscores the value of studying family-wide genetic interactions across different metabolic environments.
    DOI:  https://doi.org/10.1038/s41467-022-30126-9
  10. J Clin Invest. 2022 May 02. pii: e153153. [Epub ahead of print]132(9):
      The relevance of molecular mechanisms governing mitochondrial proteostasis to the differentiation and function of hematopoietic and immune cells is largely elusive. Through dissection of the network of proteins related to HCLS1-associated protein X-1, we defined a potentially novel functional CLPB/HAX1/(PRKD2)/HSP27 axis with critical importance for the differentiation of neutrophil granulocytes and, thus, elucidated molecular and metabolic mechanisms underlying congenital neutropenia in patients with HAX1 deficiency as well as bi- and monoallelic mutations in CLPB. As shown by stable isotope labeling by amino acids in cell culture (SILAC) proteomics, CLPB and HAX1 control the balance of mitochondrial protein synthesis and persistence crucial for proper mitochondrial function. Impaired mitochondrial protein dynamics are associated with decreased abundance of the serine-threonine kinase PRKD2 and HSP27 phosphorylated on serines 78 and 82. Cellular defects in HAX1-/- cells can be functionally reconstituted by HSP27. Thus, mitochondrial proteostasis emerges as a critical molecular and metabolic mechanism governing the differentiation and function of neutrophil granulocytes.
    Keywords:  Cell Biology; Immunology; Mitochondria; Neutrophils
    DOI:  https://doi.org/10.1172/JCI153153
  11. Nat Commun. 2022 May 03. 13(1): 2403
      C. elegans react to metabolic distress caused by mismatches in oxygen and energy status via distinct behavioral responses. At the molecular level, these responses are coordinated by under-characterized, redox-sensitive processes, thought to initiate in mitochondria. Complex I of the electron transport chain is a major site of reactive oxygen species (ROS) production and is canonically associated with oxidative damage following hypoxic exposure. Here, we use a combination of optogenetics and CRISPR/Cas9-mediated genome editing to exert spatiotemporal control over ROS production. We demonstrate a photo-locomotory remodeling of avoidance behavior by local ROS production due to the reversible oxidation of a single thiol on the complex I subunit NDUF-2.1. Reversible thiol oxidation at this site is necessary and sufficient for the behavioral response to hypoxia, does not respond to ROS produced at more distal sites, and protects against lethal hypoxic exposure. Molecular modeling suggests that oxidation at this thiol residue alters the ability for NDUF-2.1 to coordinate electron transfer to coenzyme Q by destabilizing the Q-binding pocket, causing decreased complex I activity. Overall, site-specific ROS production regulates behavioral responses and these findings provide a mechanistic target to suppress the detrimental effects of hypoxia.
    DOI:  https://doi.org/10.1038/s41467-022-30169-y
  12. Front Neurosci. 2022 ;16 800883
      Mitochondrial dysfunction is a hallmark of secondary neuroinflammatory responses and neuronal death in spinal cord injury (SCI). Even though mitochondria-based therapy is an attractive therapeutic option for SCI, the efficacy of transplantation of allogeneic mitochondria in the treatment of SCI remains unclear. Herein, we determined the therapeutic effects of mitochondrial transplantation in the traumatic SCI rats. Compressive SCI was induced by applying an aneurysm clip on the T10 spinal cord of rats. A 100-μg bolus of soleus-derived allogeneic mitochondria labeled with fluorescent tracker was transplanted into the injured spinal cords. The results showed that the transplanted mitochondria were detectable in the injured spinal cord up to 28 days after treatment. The rats which received mitochondrial transplantation exhibited better recovery of locomotor and sensory functions than those who did not. Both the expression of dynamin-related protein 1 and severity of demyelination in the injured cord were reduced in the mitochondrial transplanted groups. Mitochondrial transplantation also alleviated SCI-induced cellular apoptosis and inflammation responses. These findings suggest that transplantation of allogeneic mitochondria at the early stage of SCI reduces mitochondrial fragmentation, neuroapoptosis, neuroinflammation, and generation of oxidative stress, thus leading to improved functional recovery following traumatic SCI.
    Keywords:  allogenic mitochondria; mitochondrial dysfunction; mitochondrial transplantation; oxidative stress; spinal cord injury
    DOI:  https://doi.org/10.3389/fnins.2022.800883
  13. FEBS Lett. 2022 May 01.
      Mitochondrial activity adapts to cellular energetic and metabolic demands; its dysfunction is a hallmark of aging and many human diseases. The evolutionarily conserved translation elongation factor eIF5A is involved in maintaining mitochondrial function. In humans, eIF5A is encoded by two highly homologous but differentially expressed genes; in yeast, these are TIF51A and TIF51B. We show that yeast transcription factor Hap1 constitutively binds to the TIF51A promoter to activate its expression under respiration, but represses its expression under non-respiration conditions by recruiting the co-repressor Tup1. Hap1 indirectly regulates TIF51B expression by binding to and activating the TIF51B-repressor genes ROX1 and MOT3 under respiration and repressing them under non-respiration. Thus, the levels of eIF5A isoforms are adapted to the mitochondrial functional status.
    Keywords:   TIF51A ; TIF51B ; Hap1; Tup1; eIF5A; mitochondrial respiration; translation; yeast
    DOI:  https://doi.org/10.1002/1873-3468.14366
  14. Alzheimers Dement. 2022 May 06.
      To promote new thinking of the pathogenesis of Alzheimer's disease (AD), we examine the central role of mitochondrial dysfunction in AD. Pathologically, AD is characterized by progressive neuronal loss and biochemical abnormalities including mitochondrial dysfunction. Conventional thinking has dictated that AD is driven by amyloid beta pathology, per the Amyloid Cascade Hypothesis. However, the underlying mechanism of how amyloid beta leads to cognitive decline remains unclear. A model correctly identifying the pathogenesis of AD is critical and needed for the development of effective therapeutics. Mitochondrial dysfunction is closely linked to the core pathological feature of AD: neuronal dysfunction. Targeting mitochondria and associated proteins may hold promise for new strategies for the development of disease-modifying therapies. According to the Mitochondrial Cascade Hypothesis, mitochondrial dysfunction drives the pathogenesis of AD, as baseline mitochondrial function and mitochondrial change rates influence the progression of cognitive decline. HIGHLIGHTS: The Amyloid Cascade Model does not readily account for various parameters associated with Alzheimer's disease (AD). A unified model correctly identifying the pathogenesis of AD is greatly needed to inform the development of successful therapeutics. Mitochondria play a key and central role in the maintenance of optimal neuronal and synaptic function, the core pathological feature of AD. Mitochondrial dysfunction may be the primary cause of AD, and is a promising target for new therapeutic strategies.
    Keywords:  Alzheimer's disease; bioenergetics; mitochondrial cascade hypothesis; mitochondrial dysfunction; oxidative stress
    DOI:  https://doi.org/10.1002/alz.12683
  15. Exp Gerontol. 2022 May 01. pii: S0531-5565(22)00136-X. [Epub ahead of print] 111828
       BACKGROUND: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is characterized by progressive memory loss and cognitive impairment. Our understanding of AD pathogenesis is limited and no effective disease-modifying treatment is available. Mitochondria are cytoplasmic organelles critical to the homeostatic regulation of glucose and energy in the cell.
    METHODS: Mitochondrial abnormalities are found early in the course of AD and dysfunctional mitochondria are involved in AD progression. The resulting respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species are highly damaging to neurons. Restoration of mitochondrial function may provide a novel therapeutic strategy for AD.
    RESULTS: This review discusses the specifics of mitochondrial fragmentation, imbalances in fission and fusion, and DNA damage seen in AD and the contribution of compromised mitochondrial activity to AD etiopathogenesis. It explores how an understanding of the processes underlying mitochondrial failure may lead to urgently needed treatment innovations. It considers individual mitochondrial proteins that have emerged as promising drug targets and evaluates neuroprotective agents that could improve the functional state of mitochondria in the setting of AD.
    CONCLUSIONS: There is great promise in exploring original approaches to preserving mitochondrial viability as a means to achieve breakthroughs in treating AD.
    Keywords:  Alzheimer's disease; Amyloid; Dementia; Drug therapy; Inflammation
    DOI:  https://doi.org/10.1016/j.exger.2022.111828
  16. Front Cell Dev Biol. 2022 ;10 862506
      Mitochondria are highly dynamic organelles and their activity is known to be regulated by changes in morphology via fusion and fission events. However, the role of mitochondrial dynamics on cellular differentiation remains largely unknown. Here, we explored the molecular mechanism of mitochondrial fusion during spermatogenesis by generating an Mfn2 (mitofusin 2) conditional knock-out (cKO) mouse model. We found that depletion of MFN2 in male germ cells led to disrupted spermatogenesis and meiosis during which the majority of Mfn2 cKO spermatocytes did not develop to the pachytene stage. We showed that in these Mfn2 cKO spermatocytes, oxidative phosphorylation in the mitochondria was affected. In addition, RNA-Seq analysis showed that there was a significantly altered transcriptome profile in the Mfn2 deficient pachytene (or pachytene-like) spermatocytes, with a total of 262 genes up-regulated and 728 genes down-regulated, compared with wild-type (control) mice. Pathway enrichment analysis indicated that the peroxisome proliferator-activated receptor (PPAR) pathway was altered, and subsequent more detailed analysis showed that the expression of PPAR α and PPAR γ was up-regulated and down-regulated, respectively, in the MFN2 deficient pachytene (or pachytene-like) spermatocytes. We also demonstrated that there were more lipid droplets in the Mfn2 cKO cells than in the control cells. In conclusion, our study demonstrates a novel finding that MFN2 deficiency negatively affects mitochondrial functions and alters PPAR pathway together with lipid metabolism during spermatogenesis and meiosis.
    Keywords:  lipid metabolism; meiosis; mitochondrial dynamics; mitofusin 2; spermatogenesis
    DOI:  https://doi.org/10.3389/fcell.2022.862506
  17. EMBO J. 2022 May 02. e109460
      PINK1 and parkin constitute a mitochondrial quality control system mutated in Parkinson's disease. PINK1, a kinase, phosphorylates ubiquitin to recruit parkin, an E3 ubiquitin ligase, to mitochondria. PINK1 controls both parkin localization and activity through phosphorylation of both ubiquitin and the ubiquitin-like (Ubl) domain of parkin. Here, we observed that phospho-ubiquitin can bind to two distinct sites on parkin, a high-affinity site on RING1 that controls parkin localization and a low-affinity site on RING0 that releases parkin autoinhibition. Surprisingly, ubiquitin vinyl sulfone assays, ITC, and NMR titrations showed that the RING0 site has higher affinity for phospho-ubiquitin than phosphorylated Ubl in trans. We observed parkin activation by micromolar concentrations of tetra-phospho-ubiquitin chains that mimic mitochondria bearing multiple phosphorylated ubiquitins. A chimeric form of parkin with the Ubl domain replaced by ubiquitin was readily activated by PINK1 phosphorylation. In all cases, mutation of the binding site on RING0 abolished parkin activation. The feedforward mechanism of parkin activation confers robustness and rapidity to the PINK1-parkin pathway and likely represents an intermediate step in its evolutionary development.
    Keywords:  Parkinson's disease; autophagy; mitophagy; open-loop control; ubiquitin
    DOI:  https://doi.org/10.15252/embj.2021109460
  18. Nucleic Acids Res. 2022 May 07. pii: gkac306. [Epub ahead of print]
      Mitochondria are subcellular organelles present in almost all eukaryotic cells, which play a central role in cellular metabolism. Different tissues, health and age conditions are characterized by a difference in mitochondrial structure and composition. The visual data mining platform mitoXplorer 1.0 was developed to explore the expression dynamics of genes associated with mitochondrial functions that could help explain these differences. It, however, lacked functions aimed at integrating mitochondria in the cellular context and thus identifying regulators that help mitochondria adapt to cellular needs. To fill this gap, we upgraded the mitoXplorer platform to version 2.0 (mitoXplorer 2.0). In this upgrade, we implemented two novel integrative functions, network analysis and transcription factor enrichment, to specifically help identify signalling or transcriptional regulators of mitochondrial processes. In addition, we implemented several other novel functions to allow the platform to go beyond simple data visualization, such as an enrichment function for mitochondrial processes, a function to explore time-series data, the possibility to compare datasets across species and an IDconverter to help facilitate data upload. We demonstrate the usefulness of these functions in three specific use cases. mitoXplorer 2.0 is freely available without login at http://mitoxplorer2.ibdm.univ-mrs.fr.
    DOI:  https://doi.org/10.1093/nar/gkac306
  19. Pediatr Neurol. 2022 Apr 14. pii: S0887-8994(22)00054-6. [Epub ahead of print]131 54-62
      The purpose of this review is to describe the current diagnostic approach to inherited ataxias during childhood. With the expanding use and availability of gene testing technologies including large sequencing panels, the ability to arrive at a precise genetic diagnosis in this group of disorders has been improving. We have reviewed all the gene sequencing studies of ataxias available by a comprehensive literature search and summarize their results. We provide a logical algorithm for a diagnostic approach in the context of this evolving information. We stress the fact that both autosomal recessive and autosomal dominant mutations can occur in children with ataxias and the need for keeping in mind nucleotide repeat expansions, which cannot be detected by sequencing technologies, as a possible cause of progressive ataxias in children. We discuss the traditional phenotype-based diagnostic approach in the context of gene testing technologies. Finally, we summarize those disorders in which a specific therapy may be indicated.
    Keywords:  Cerebellar ataxias; DNA sequencing; Friedreich's ataxia; Genetic testing
    DOI:  https://doi.org/10.1016/j.pediatrneurol.2022.04.004