bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2022–07–10
29 papers selected by
Dario Brunetti, Fondazione IRCCS Istituto Neurologico



  1. Nat Rev Mol Cell Biol. 2022 Jul 08.
      Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
    DOI:  https://doi.org/10.1038/s41580-022-00506-6
  2. Front Cell Neurosci. 2022 ;16 878103
      PKAN disease is caused by mutations in the PANK2 gene, encoding the mitochondrial enzyme pantothenate kinase 2, catalyzing the first and key reaction in Coenzyme A (CoA) biosynthetic process. This disorder is characterized by progressive neurodegeneration and excessive iron deposition in the brain. The pathogenic mechanisms of PKAN are still unclear, and the available therapies are only symptomatic. Although iron accumulation is a hallmark of PKAN, its relationship with CoA dysfunction is not clear. We have previously developed hiPS-derived astrocytes from PKAN patients showing iron overload, thus recapitulating the human phenotype. In this work, we demonstrated that PKAN astrocytes presented an increase in transferrin uptake, a key route for cellular iron intake via transferrin receptor-mediated endocytosis of transferrin-bound iron. Investigation of constitutive exo-endocytosis and vesicular dynamics, exploiting the activity-enriching biosensor SynaptoZip, led to the finding of a general impairment in the constitutive endosomal trafficking in PKAN astrocytes. CoA and 4-phenylbutyric acid treatments were found to be effective in partially rescuing the aberrant vesicular behavior and iron intake. Our results demonstrate that the impairment of CoA biosynthesis could interfere with pivotal intracellular mechanisms involved in membrane fusions and vesicular trafficking, leading to an aberrant transferrin receptor-mediated iron uptake.
    Keywords:  PKAN disease; cellular iron uptake; endosomal trafficking; iron accumulation; neurodegeneration
    DOI:  https://doi.org/10.3389/fncel.2022.878103
  3. Autophagy. 2022 Jul 04.
      
    Keywords:  Acetylation; CoA; Parkinson disease; Pink1/PINK1; autophagy receptor; fbl/PANK2; mitophagy; pantothenate kinase-associated neurodegeneration; park/PRKN
    DOI:  https://doi.org/10.1080/15548627.2022.2094605
  4. Development. 2022 Oct 15. pii: dev199914. [Epub ahead of print]149(20):
      Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.
    Keywords:  Brain organoids; Glycolysis; Leigh syndrome; Mitochondria; Neural precursor cells; Neural rosettes; Oxidative phosphorylation; Stem cells
    DOI:  https://doi.org/10.1242/dev.199914
  5. Cell Reprogram. 2022 Jul 08.
      Mitochondrial diseases are a heterogeneous group of rare genetic disorders caused by mutations in nuclear or mitochondrial DNA (mtDNA). These diseases are frequently multisystemic, although mainly affect tissues that require large amounts of energy such as the brain. Mutations in mitochondrial transfer RNA (mt-tRNA) lead to defects in protein translation that may compromise some or all mtDNA-encoded proteins. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) syndrome is mainly caused by the m.3243A>G mutation in the mt-tRNALeu(UUR) (MT-TL1) gene. Owing to the lack of proper animal models, several cellular models have been developed to study the disease, providing insight in the pathophysiological mechanisms of MELAS. In this study, we show a successful direct conversion of MELAS patient-derived fibroblasts into induced neurons (iNs) for the first time, as well as an electrophysiological characterization of iNs cocultured with astrocytes. In addition, we performed bioenergetics analysis to study the consequences of m.3243A>G mutation in this neuronal model of MELAS syndrome.
    Keywords:  MELAS syndrome; direct reprogramming; induced neurons; mitochondria; mitochondrial diseases
    DOI:  https://doi.org/10.1089/cell.2022.0055
  6. Neuropathol Appl Neurobiol. 2022 Jul 05. e12833
       AIMS: Alpers' syndrome is a severe neurodegenerative disease typically caused by bi-allelic variants in the mitochondrial DNA (mtDNA) polymerase gene, POLG, leading to mtDNA depletion. Intractable epilepsy, often with an occipital focus, and extensive neurodegeneration are prominent features of Alpers' syndrome. Mitochondrial oxidative phosphorylation (OXPHOS) is severely impaired with mtDNA depletion and is likely to be a major contributor to the epilepsy and neurodegeneration in Alpers' syndrome. We hypothesised that parvalbumin-positive(+) interneurons, a neuronal class critical for inhibitory regulation of physiological cortical rhythms, would be particularly vulnerable in Alpers' syndrome due to the excessive energy demands necessary to sustain their fast-spiking activity.
    METHODS: We performed a quantitative neuropathological investigation of inhibitory interneuron subtypes (parvalbumin+, calretinin+, calbindin+, somatostatin interneurons+) in post-mortem neocortex from fourteen Alpers' syndrome patients, five sudden unexpected death in epilepsy (SUDEP) patients (to control for effects of epilepsy) and nine controls.
    RESULTS: We identified a severe loss of parvalbumin+ interneurons and clear evidence of OXPHOS impairment in those that remained. Comparison of regional abundance of interneuron subtypes in control tissues demonstrated enrichment of parvalbumin+ interneurons in the occipital cortex, whilst other subtypes did not exhibit such topographic specificity.
    CONCLUSIONS: These findings suggest the vulnerability of parvalbumin+ interneurons to OXPHOS deficits coupled with the high abundance of parvalbumin+ interneurons in the occipital cortex, are key factors in the aetiology of the occipital-predominant epilepsy that characterises Alpers' syndrome. These findings provide novel insights into Alpers' syndrome neuropathology, with important implications for the development of preclinical models and disease-modifying therapeutics.
    Keywords:  Alpers’ syndrome; POLG; calretinin; inhibitory interneurons; mitochondrial epilepsy; parvalbumin; seizures
    DOI:  https://doi.org/10.1111/nan.12833
  7. Clin Genet. 2022 Jul 09.
      Leber hereditary optic neuropathy is a mitochondrial disease mainly due to pathologic mutations in mitochondrial genes related to the respiratory complex I of the oxidative phosphorylation system. Genetic, physiological, and environmental factors modulate the penetrance of these mutations. We report two patients suffering from this disease and harboring a m.15950G>A mutation in the mitochondrial DNA-encoded gene for the threonine transfer RNA. We also provide evidences supporting the pathogenicity of this mutation. This article is protected by copyright. All rights reserved.
    Keywords:  LHON; mtDNA; mutation; tRNA
    DOI:  https://doi.org/10.1111/cge.14189
  8. Neural Regen Res. 2023 Jan;18(1): 94-101
      At the present, association of mitochondrial dysfunction and progression of neurological disorders has gained significant attention. Defects in mitochondrial network dynamics, point mutations, deletions, and interaction of pathogenomic proteins with mitochondria are some of the possible underlying mechanisms involved in these neurological disorders. Mitochondrial genetics, defects in mitochondrial oxidative phosphorylation machinery, and reactive oxygen species production might share common crosstalk in the progression of these neurological disorders. It is of significant interests to explore and develop therapeutic strategies aimed at correcting mitochondrial abnormalities. This review provided insights on mitochondrial dysfunction/mutations involved in the progression of Alzheimer's disease, Huntington's disease, and epilepsy with a special focus on Parkinson's disease pathology. Along with the deleterious effects of mitochondrial mutations in aforesaid neurological disorders, this paper unraveled the available therapeutic strategy, specifically aiming to improve mitochondrial dysfunction, drugs targeting mitochondrial proteins, gene therapies aimed at correcting mutant mtDNA, peptide-based approaches, and lipophilic cations.
    Keywords:  adenosine-triphosphate deficiency; mitochondrial fission/fusion; mitochondrial mutations; neurodegenerative disorders; oxidative phosphorylation; therapeutic interventions
    DOI:  https://doi.org/10.4103/
  9. Mov Disord. 2022 Jul 06.
       BACKGROUND: Parkinsonian features have been described in patients harboring variants in nuclear genes encoding for proteins involved in mitochondrial DNA maintenance, such as TWNK.
    OBJECTIVES: The aim was to screen for TWNK variants in an Italian cohort of Parkinson's disease (PD) patients and to assess the occurrence of parkinsonism in patients presenting with TWNK-related autosomal dominant progressive external ophthalmoplegia (TWNK-adPEO).
    METHODS: Genomic DNA of 263 consecutively collected PD patients who underwent diagnostic genetic testing was analyzed with a targeted custom gene panel including TWNK, as well as genes causative of monogenic PD. Genetic and clinical data of 18 TWNK-adPEO patients with parkinsonism were retrospectively analyzed.
    RESULTS: Six of 263 PD patients (2%), presenting either with isolated PD (n = 4) or in combination with bilateral ptosis (n = 2), carried TWNK likely pathogenic variants. Among 18 TWNK-adPEO patients, 5 (28%) had parkinsonism.
    CONCLUSIONS: We show candidate TWNK variants occurring in PD without PEO. This finding will require further confirmatory studies. © 2022 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
    Keywords:  Parkinson's disease; TWNK; mitochondrial DNA; parkinsonism; twinkle
    DOI:  https://doi.org/10.1002/mds.29139
  10. FEBS Lett. 2022 Jul 04.
      Mitochondrial dysfunction is known to contribute to a range of diseases, and primary mitochondrial defects strongly impact high-energy organs such as the heart. Platforms for high-throughput and human-relevant assessment of mitochondrial diseases are currently lacking, hindering the development of targeted therapies. In the past decade, human induced pluripotent stem cells (iPSCs) have become a promising technology for drug discovery in basic and clinical research. In particular, human iPSC-derived cardiomyocytes (iPSC-CMs) offer a unique tool to study a wide range of mitochondrial functions and possess the potential to become a key translational asset for mitochondrial drug development. This review summarizes mitochondrial functions and recent therapeutic discoveries, advancements, and limitations of using iPSC-CMs to study mitochondrial diseases of the heart with an emphasis on cardiac applications.
    Keywords:  cardiomyocyte; cardiovascular disease; heart; iPSC; mitochondria; stem cell
    DOI:  https://doi.org/10.1002/1873-3468.14444
  11. Mol Genet Metab Rep. 2022 Jun;31 100877
      Coenzyme Q10 (CoQ10) is necessary as electron transporter in mitochondrial respiration and other cellular functions. CoQ10 is synthesized by all cells and defects in the synthesis pathway result in primary CoQ10 deficiency that frequently leads to severe mitochondrial disease syndrome. CoQ10 is exceedingly hydrophobic, insoluble, and poorly bioavailable, with the result that dietary CoQ10 supplementation produces no or only minimal relief for patients. We studied a patient from Turkey and identified and characterized a new mutation in the CoQ10 biosynthetic gene COQ7 (c.161G > A; p.Arg54Gln). We find that unexpected neuromuscular pathology can accompany CoQ10 deficiency caused by a COQ7 mutation. We also show that by-passing the need for COQ7 by providing the unnatural precursor 2,4-dihydroxybenzoic acid, as has been proposed, is unlikely to be an effective and safe therapeutic option. In contrast, we show for the first time in human patient cells that the respiratory defect resulting from CoQ10 deficiency is rescued by providing CoQ10 formulated with caspofungin (CF/CoQ). Caspofungin is a clinically approved intravenous fungicide whose surfactant properties lead to CoQ10 micellization, complete water solubilization, and efficient uptake by cells and organs in animal studies. These findings reinforce the possibility of using CF/CoQ in the clinical treatment of CoQ10-deficient patients.
    Keywords:  2,4-dihydroxybenzoic acid; COQ7; CoQ deficiency; CoQ10; Coenzyme Q; Ubiquinone
    DOI:  https://doi.org/10.1016/j.ymgmr.2022.100877
  12. Cells. 2022 Jul 02. pii: 2097. [Epub ahead of print]11(13):
      The best-known hallmarks of Parkinson's disease (PD) are the motor deficits that result from the degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic neurons are thought to be particularly susceptible to mitochondrial dysfunction. As such, for their survival, they rely on the elaborate quality control mechanisms that have evolved in mammalian cells to monitor mitochondrial function and eliminate dysfunctional mitochondria. Mitophagy is a specialized type of autophagy that mediates the selective removal of damaged mitochondria from cells, with the net effect of dampening the toxicity arising from these dysfunctional organelles. Despite an increasing understanding of the molecular mechanisms that regulate the removal of damaged mitochondria, the detailed molecular link to PD pathophysiology is still not entirely clear. Herein, we review the fundamental molecular pathways involved in PINK1/Parkin-mediated and receptor-mediated mitophagy, the evidence for the dysfunction of these pathways in PD, and recently-developed state-of-the art assays for measuring mitophagy in vitro and in vivo.
    Keywords:  PINK1; Parkin; Parkinson’s disease; alpha-syn; mito-Keima; mito-QC; mito-SRAI; mitochondrial quality control; mitophagy; protein quality control; ubiquitin
    DOI:  https://doi.org/10.3390/cells11132097
  13. Front Med (Lausanne). 2022 ;9 906112
      Kearns Sayre Syndrome (KSS) is a rare mitochondrial disease characterized by a primary dysfunction of the mitochondrial respiratory chain. Cardiac involvement is a poor prognostic factor of KSS. Pregnancy and delivery in a KSS patient with cardiac involvement is uncommon, and strategies for the supervision and management of this group remain unclear. Herein, we report and discuss pregnancy and delivery complicated with acute cardiopulmonary failure in a woman with KSS.
    Keywords:  Kearns Sayre Syndrome; cardiac failure; case report; mitochondrial; postpartum; pregnancy
    DOI:  https://doi.org/10.3389/fmed.2022.906112
  14. Front Aging Neurosci. 2022 ;14 885500
      Parkinson's disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular "powerhouse" of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
    Keywords:  Parkinson’s disease; bioenergetics; mitochondrial dysfunction; mitochondrial quality control; therapy
    DOI:  https://doi.org/10.3389/fnagi.2022.885500
  15. Life Sci. 2022 Jul 01. pii: S0024-3205(22)00453-2. [Epub ahead of print] 120753
      Gastroduodenal inflammation and ulcerative injuries are increasing due to expanding socio-economic stress, unhealthy food habits-lifestyle, smoking, alcoholism and usage of medicines like non-steroidal anti-inflammatory drugs. In fact, gastrointestinal (GI) complications, associated with the prevailing COVID-19 pandemic, further, poses a challenge to global healthcare towards safeguarding the GI tract. Emerging evidences have discretely identified mitochondrial dysfunctions as common etiological denominators in diseases. However, it is worth realizing that mitochondrial dysfunctions are not just consequences of diseases. Rather, damaged mitochondria severely aggravate the pathogenesis thereby qualifying as perpetrable factors worth of prophylactic and therapeutic targeting. Oxidative and nitrosative stress due to endogenous and exogenous stimuli triggers mitochondrial injury causing production of mitochondrial damage associated molecular patterns (mtDAMPs), which, in a feed-forward loop, inflicts inflammatory tissue damage. Mitochondrial structural dynamics and mitophagy are crucial quality control parameters determining the extent of mitopathology and disease outcomes. Interestingly, apart from endogenous factors, mitochondria also crosstalk and in turn get detrimentally affected by gut pathobionts colonized during luminal dysbiosis. Although mitopathology is documented in various pre-clinical/clinical studies, a comprehensive account appreciating the mitochondrial basis of GI mucosal pathologies is largely lacking. Here we critically discuss the molecular events impinging on mitochondria along with the interplay of mitochondria-derived factors in fueling mucosal pathogenesis. We specifically emphasize on the potential role of aberrant mitochondrial dynamics, anomalous mitophagy, mitochondrial lipoxidation and ferroptosis as emerging regulators of GI mucosal pathogenesis. We finally discuss about the prospect of mitochondrial targeting for next-generation drug discovery against GI disorders.
    Keywords:  COVID-19; Inflammation; Inflammatory bowel disease; Mitochondria targeted antioxidants; Mitochondrial oxidative stress; Peptic ulcer
    DOI:  https://doi.org/10.1016/j.lfs.2022.120753
  16. Front Cardiovasc Med. 2022 ;9 917135
      Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles to share metabolites, proteins, and mitochondrial DNA, promoting complementarity between damaged mitochondria. Fission increases the number of mitochondria to ensure that they are passed on to their offspring during mitosis. Mitophagy is a process of selective removal of excess or damaged mitochondria that helps improve energy metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction, high production of reactive oxygen species, increased inflammatory response, and low levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure, atherosclerosis, and obesity.
    Keywords:  cardiometabolic disease; diabetic cardiomyopathy; mitochondrial dynamics; mitochondrial fission; mitochondrial fusion; mitophagy; myocardial infarction
    DOI:  https://doi.org/10.3389/fcvm.2022.917135
  17. Transl Neurodegener. 2022 Jul 04. 11(1): 36
      Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
    Keywords:  Alzheimer's disease; Amyotrophic lateral sclerosis; Cell reprogramming; Fibroblasts; Huntington’s disease; Mitochondria; Mitochondrial dysfunction; Parkinson’s disease
    DOI:  https://doi.org/10.1186/s40035-022-00308-y
  18. Cells. 2022 Jun 28. pii: 2049. [Epub ahead of print]11(13):
      Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and highly fatal neurodegenerative disease. Although the pathogenesis of ALS remains unclear, increasing evidence suggests that a key contributing factor is mitochondrial dysfunction. Mitochondria are organelles in eukaryotic cells responsible for bioenergy production, cellular metabolism, signal transduction, calcium homeostasis, and immune responses and the stability of their function plays a crucial role in neurons. A single disorder or defect in mitochondrial function can lead to pathological changes in cells, such as an impaired calcium buffer period, excessive generation of free radicals, increased mitochondrial membrane permeability, and oxidative stress (OS). Recent research has also shown that these mitochondrial dysfunctions are also associated with pathological changes in ALS and are believed to be commonly involved in the pathogenesis of the disease. This article reviews the latest research on mitochondrial dysfunction and its impact on the progression of ALS, with specific attention to the potential of novel therapeutic strategies targeting mitochondrial dysfunction.
    Keywords:  amyotrophic lateral sclerosis; mitochondrial dysfunction; neurodegenerative diseases
    DOI:  https://doi.org/10.3390/cells11132049
  19. Medicine (Baltimore). 2022 Jul 08. 101(27): e29239
       INTRODUCTION: Mitochondrial complex I deficiency (MCID) and abbFINCA syndrome are lethal congenital diseases and cases in the neonatal period are rarely reported. Here, we identified a Chinese Hani minority neonate with rare MCID and FINCA syndrome. This study was to analyze the clinical manifestations and pathogenic gene variations, and to investigate causes of quick postnatal death of patient and possible molecular pathogenic mechanisms.
    PATIENT CONCERNS: A 17-day-old patient had reduced muscle tension, diminished primitive reflexes, significantly abnormal blood gas analysis, and progressively increased blood lactate and blood glucose. Imaging studies revealed pneumonia, pulmonary hypertension, and brain abnormalities.
    DIAGNOSIS: Whole-exome sequencing revealed that the NDUFS6 gene of the patient carried c. 344G > T (p.C115F) novel homozygous variation, and the NHLRC2 gene carried c. 1749C > G (p.F583L) and c. 2129C > T (p.T710M) novel compound heterozygous variation.
    INTERVENTIONS AND OUTCOMES: The patient was given endotracheal intubation, respiratory support, high-frequency ventilation, antishock therapy, as well as iNO and Alprostadil to reduce pulmonary hypertension and maintain homeostatic equilibrium. However, the patient was critically ill and died in 27 days.
    CONCLUSION: The patient has MCID due to a novel mutation in NDUFS6 and FINCA syndrome due to novel mutations in NHLRC2, which is the main reason for the rapid onset and quick death of the patient.
    DOI:  https://doi.org/10.1097/MD.0000000000029239
  20. Biogerontology. 2022 Jul 04.
      Healthy aging is the art of balancing a delicate scale. On one side of the scale, there are the factors that make life difficult with aging, and on the other side are the products of human effort against these factors. The most important factors that make the life difficult with aging are age-related disorders. Developing senotherapeutic strategies may bring effective solutions for the sufferers of age-related disorders. Mitochondrial dysfunction comes first in elucidating the pathogenesis of age-related disorders and presenting appropriate treatment options. Although it has been widely accepted that mitochondrial dysfunction is a common characteristic of cellular senescence, it still remains unclear why dysfunctional mitochondria occupy a central position in the development senescence-associated secretory phenotype (SASP) related to age-related disorders. Mitochondrial dysfunction and SASP-related disease progression are closely interlinked to weaken immunity which is a common phenomenon in aging. A group of substances known as senotherapeutics targeted to senescent cells can be classified into two main groups: senolytics (kill senescent cells) and senomorphics/senostatics (suppress their SASP secretions) in order to extend health lifespan and potentially lifespan. As mitochondria are also closely related to the survival of senescent cells, using either mitochondria-targeted senolytic or redox modulator senomorphic strategies may help us to solve the complex problems with the detrimental consequences of cellular senescence. Killing of senescent cells and/or ameliorate their SASP-related negative effects are currently considered to be effective mitochondria-directed gerotherapeutic approaches for fighting against age-related disorders.
    Keywords:  Aging; Mitochondria; Senescence; Senotherapeutics
    DOI:  https://doi.org/10.1007/s10522-022-09973-y
  21. Int J Mol Sci. 2022 Jun 30. pii: 7263. [Epub ahead of print]23(13):
      Mitochondrial dysfunction is a pathophysiological hallmark of most neurodegenerative diseases. Several clinical trials targeting mitochondrial dysfunction have been performed with conflicting results. Reliable biomarkers of mitochondrial dysfunction in vivo are thus needed to optimize future clinical trial designs. This narrative review highlights various neuroimaging methods to probe mitochondrial dysfunction. We provide a general overview of the current biological understanding of mitochondrial dysfunction in degenerative brain disorders and how distinct neuroimaging methods can be employed to map disease-related changes. The reviewed methodological spectrum includes positron emission tomography, magnetic resonance, magnetic resonance spectroscopy, and near-infrared spectroscopy imaging, and how these methods can be applied to study alterations in oxidative phosphorylation and oxidative stress. We highlight the advantages and shortcomings of the different neuroimaging methods and discuss the necessary steps to use these for future research. This review stresses the importance of neuroimaging methods to gain deepened insights into mitochondrial dysfunction in vivo, its role as a critical disease mechanism in neurodegenerative diseases, the applicability for patient stratification in interventional trials, and the quantification of individual treatment responses. The in vivo assessment of mitochondrial dysfunction is a crucial prerequisite for providing individualized treatments for neurodegenerative disorders.
    Keywords:  Parkinson’s disease (PD); mitochondria; mitochondrial dysfunction; neurodegeneration; neuroimaging
    DOI:  https://doi.org/10.3390/ijms23137263
  22. Aging Cell. 2022 Jul 07. e13663
      Alzheimer's disease (AD) is the most common cause of mental dementia in the aged population. AD is characterized by the progressive decline of memory and multiple cognitive functions, and changes in behavior and personality. Recent research has revealed age-dependent increased levels of VDAC1 in postmortem AD brains and cerebral cortices of APP, APPxPS1, and 3xAD.Tg mice. Further, we found abnormal interaction between VDAC1 and P-Tau in the AD brains, leading to mitochondrial structural and functional defects. Our current study aimed to understand the impact of a partial reduction of voltage-dependent anion channel 1 (VDAC1) protein on mitophagy/autophagy, mitochondrial and synaptic activities, and behavior changes in transgenic TAU mice in Alzheimer's disease. To determine if a partial reduction of VDAC1 reduces mitochondrial and synaptic toxicities in transgenic Tau (P301L) mice, we crossed heterozygote VDAC1 knockout (VDAC1+/- ) mice with TAU mice and generated double mutant (VDAC1+/- /TAU) mice. We assessed phenotypic behavior, protein levels of mitophagy, autophagy, synaptic, other key proteins, mitochondrial morphology, and dendritic spines in TAU mice relative to double mutant mice. Partial reduction of VDAC1 rescued the TAU-induced behavioral impairments such as motor coordination and exploratory behavioral changes, and learning and spatial memory impairments in VDAC1+/- /TAU mice. Protein levels of mitophagy, autophagy, and synaptic proteins were significantly increased in double mutant mice compared with TAU mice. In addition, dendritic spines were significantly increased; the mitochondrial number was significantly reduced, and mitochondrial length was increased in double mutant mice. Based on these observations, we conclude that reduced VDAC1 is beneficial in symptomatic-transgenic TAU mice.
    Keywords:  Alzheimer's disease; autophagy; hexokinases; mitochondria; mitochondrial biogenesis; mitophagy; oxidative stress; voltage-dependent anion channel 1
    DOI:  https://doi.org/10.1111/acel.13663
  23. Hum Mol Genet. 2022 Jul 07. pii: ddac151. [Epub ahead of print]
      NADK2 encodes the mitochondrial form of NAD Kinase, which phosphorylates nicotinamide adenine dinucleotide (NAD). Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here we describe two chemically-induced mouse mutations in Nadk2, S326L and S330P, which cause a severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on brain, muscle, liver, and spinal cord at the same ages, and plasma at 5 weeks. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency, and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNAseq and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, as well as those processes that are gene-specific. These findings improve our understanding of the pathophysiology of neuromuscular diseases, and describe mouse models that will be useful for future preclinical studies.
    Keywords:  metabolomicsRNAseqneuromuscular diseasemitochondrial diseasePla2g6infantile neuroaxonal dystrophyINADbrain iron accumulationmouse models
    DOI:  https://doi.org/10.1093/hmg/ddac151
  24. Mol Genet Metab. 2022 Jun 13. pii: S1096-7192(22)00338-9. [Epub ahead of print]
      Friedreich Ataxia (FA) is a rare and often fatal autosomal recessive disease in which a mitochondrial protein, frataxin (FXN), is severely reduced in all tissues. With loss of FXN, mitochondrial metabolism is severely disrupted. Multiple therapeutic approaches are in development, but a key limitation is the lack of biomarkers reflecting the activity of FXN in a timely fashion. We predicted this dysregulated metabolism would present a unique metabolite profile in blood of FA patients versus Controls (Con). Plasma from 10 FA and 11 age and sex matched Con subjects was analyzed by targeted mass spectrometry and untargeted NMR. This combined approach yielded quantitative measurements for 540 metabolites and found 59 unique metabolites (55 from MS and 4 from NMR) that were significantly different between cohorts. Correlation-based network analysis revealed several clusters of pathway related metabolites including a cluster associated with one‑carbon (1C) metabolism composed of formate, sarcosine, hypoxanthine, and homocysteine. Receiver operator characteristics analyses demonstrated an excellent ability to discriminate between Con and FA with AUC values >0.95. These results are the first reported metabolomic analyses of human patients with FA. The metabolic perturbations, especially those related to 1C metabolism, may serve as a valuable biomarker panel of disease progression and response to therapy. The identification of dysregulated 1C metabolism may also inform the search for new therapeutic targets related to this pathway.
    Keywords:  Biomarkers; Friedreich Ataxia; Metabolomics; One‑carbon metabolism
    DOI:  https://doi.org/10.1016/j.ymgme.2022.06.002
  25. Am J Physiol Cell Physiol. 2022 Jul 04.
      The impact of aerobic training on human skeletal muscle cell (HSkMC) mitochondrial metabolism is a significant research gap, critical to understanding the mechanisms by which exercise augments skeletal muscle metabolism. We therefore assessed mitochondrial content and capacity in fully differentiated CD56+ HSkMCs from lean active (LA) and sedentary individuals with obesity (OS) at baseline, as well as lean/overweight sedentary individuals (LOS) at baseline and following an 18-day aerobic training intervention. Participants had in vivo skeletal muscle PCr recovery rate by 31P-MRS (mitochondrial oxidative kinetics) and cardiorespiratory fitness (VO2max) assessed at baseline. Biopsies of the vastus lateralis were performed for the isolation of skeletal muscle stem cells. LOS individuals repeated all assessments post-training. HSkMCs were evaluated for mitochondrial respiratory capacity by high resolution respirometry. Data were normalized to two indices of mitochondrial content (CS activity and OXPHOS protein expression) and a marker of total cell count (quantity of DNA).LA individuals had significantly higher VO2max than OS and LOS-Pre training; however, no differences were observed in skeletal muscle mitochondrial capacity, nor in carbohydrate- or fatty acid-supported HSkMC respiratory capacity. Aerobic training robustly increased in vivo skeletal muscle mitochondrial capacity of LOS individuals, as well as carbohydrate-supported HSkMC respiratory capacity. Indices of mitochondrial content and total cell count were similar among the groups and did not change with aerobic training.Our findings demonstrate that bioenergetic changes induced with aerobic training in skeletal muscle in vivo are retained in HSkMCs in vitro without impacting mitochondrial content, suggesting that training improves intrinsic skeletal muscle mitochondrial capacity.
    Keywords:  Skeletal muscle metabolism; aerobic training response; differentiated myotubes; mitochondrial content; mitochondrial respiratory capacity
    DOI:  https://doi.org/10.1152/ajpcell.00146.2022
  26. Med Microbiol Immunol. 2022 Jul 05.
      Structure and integrity of the mitochondrial network play important roles in many cellular processes. Loss of integrity can lead to the activation of a variety of signalling pathways and affect the cell's response to infections. The activation of such mitochondria-mediated cellular responses has implications for infection recognition, signal transduction and pathogen control. Although we have a basic understanding of mitochondrial factors such as mitochondrial DNA or RNA that may be involved in processes like pro-inflammatory signalling, the diverse roles of mitochondria in host defence remain unclear. Here we will first summarise the functions of mitochondria in the host cell and provide an overview of the major known mitochondrial stress responses. We will then present recent studies that have contributed to the understanding of the role of mitochondria in infectious diseases and highlight a number of recently investigated models of bacterial and viral infections.
    Keywords:  Infection; Inflammation; Innate immunity; Metabolism; Mitochondria; Stress responses
    DOI:  https://doi.org/10.1007/s00430-022-00742-9
  27. Hum Mutat. 2022 Jul 05.
      Aminoacylation of tRNA is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARS). ARS have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: aminoacyl-tRNA synthetase-related developmental disorders with or without microcephaly. This article is protected by copyright. All rights reserved.
    Keywords:  ARS; SARS1; WARS1; aminoacyl-tRNA synthetase; aminoacylation; autosomal recessive; intellectual disability; microcephaly; tRNA
    DOI:  https://doi.org/10.1002/humu.24430
  28. Int J Mol Sci. 2022 Jun 30. pii: 7327. [Epub ahead of print]23(13):
      Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.
    Keywords:  VARS2; heart failure; integrated stress response; mitochondrial FAO
    DOI:  https://doi.org/10.3390/ijms23137327
  29. Nat Commun. 2022 Jul 05. 13(1): 3856
      AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics which coordinates metabolism by phosphorylating a plethora of substrates throughout the cell. But how AMPK activity is regulated at different subcellular locations for precise spatiotemporal control over metabolism is unclear. Here we present a sensitive, single-fluorophore AMPK activity reporter (ExRai AMPKAR), which reveals distinct kinetic profiles of AMPK activity at the mitochondria, lysosome, and cytoplasm. Genetic deletion of the canonical upstream kinase liver kinase B1 (LKB1) results in slower AMPK activity at lysosomes but does not affect the response amplitude at lysosomes or mitochondria, in sharp contrast to the necessity of LKB1 for maximal cytoplasmic AMPK activity. We further identify a mechanism for AMPK activity in the nucleus, which results from cytoplasmic to nuclear shuttling of AMPK. Thus, ExRai AMPKAR enables illumination of the complex subcellular regulation of AMPK signaling.
    DOI:  https://doi.org/10.1038/s41467-022-31190-x