bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2023‒08‒27
thirty papers selected by
Dario Brunetti, Fondazione IRCCS Istituto Neurologico 



  1. Pharmaceutics. 2023 Aug 05. pii: 2089. [Epub ahead of print]15(8):
      Mitochondria are dynamic organelles that play a crucial role in numerous cellular activities [...].
    DOI:  https://doi.org/10.3390/pharmaceutics15082089
  2. Ageing Res Rev. 2023 Aug 23. pii: S1568-1637(23)00197-6. [Epub ahead of print] 102038
      Intercellular signaling and component conduction are essential for multicellular organisms' homeostasis, and mitochondrial transcellular transport is a key example of such cellular component exchange. In physiological situations, mitochondrial transfer is linked with biological development, energy coordination, and clearance of harmful components, remarkably playing important roles in maintaining mitochondrial quality. Mitochondria are engaged in many critical biological activities, like oxidative metabolism and biomolecular synthesis, and are exclusively prone to malfunction in pathological processes. Importantly, severe mitochondrial damage will further amplify the defects in the mitochondrial quality control system, which will mobilize more active mitochondrial transfer, replenish exogenous healthy mitochondria, and remove endogenous damaged mitochondria to facilitate disease outcomes. This review explores intercellular mitochondrial transport in cells, its role in cellular mitochondrial quality control, and the linking mechanisms in cellular crosstalk. We also describe advances in therapeutic strategies for diseases that target mitochondrial transfer.
    Keywords:  cell crosstalk; intercellular mitochondrial transfer; mitochondrial quality control; therapy
    DOI:  https://doi.org/10.1016/j.arr.2023.102038
  3. Genes (Basel). 2023 Jul 27. pii: 1536. [Epub ahead of print]14(8):
      Mitochondrial diseases are the most common inherited inborn error of metabolism resulting in deficient ATP generation, due to failure in homeostasis and proper bioenergetics. The most frequent mitochondrial disease manifestation in children is Leigh syndrome (LS), encompassing clinical, neuroradiological, biochemical, and molecular features. It typically affects infants but occurs anytime in life. Considering recent updates, LS clinical presentation has been stretched, and is now named LS spectrum (LSS), including classical LS and Leigh-like presentations. Apart from clinical diagnosis challenges, the molecular characterization also progressed from Sanger techniques to NGS (next-generation sequencing), encompassing analysis of nuclear (nDNA) and mitochondrial DNA (mtDNA). This upgrade resumed steps and favored diagnosis. Hereby, our paper presents molecular and clinical data on a Portuguese cohort of 40 positive cases of LSS. A total of 28 patients presented mutation in mtDNA and 12 in nDNA, with novel mutations identified in a heterogeneous group of genes. The present results contribute to the better knowledge of the molecular basis of LS and expand the clinical spectrum associated with this syndrome.
    Keywords:  NGS; clinical spectrum; leigh syndrome; mitochondrial disorders; mutational spectrum
    DOI:  https://doi.org/10.3390/genes14081536
  4. Life Metab. 2023 Oct;2(5): load027
      The AMP-activated protein kinase (AMPK) is known to maintain the integrity of cellular mitochondrial networks by (i) promoting fission, (ii) inhibiting fusion, (iii) promoting recycling of damaged components via mitophagy, (iv) enhancing lysosomal biogenesis to support mitophagy, and (v) promoting biogenesis of new mitochondrial components. While the AMPK targets underlying the first three of these effects are known, a recent paper suggests that direct phosphorylation of the folliculin-interacting protein 1 (FNIP1) by AMPK may be involved in the remaining two.
    DOI:  https://doi.org/10.1093/lifemeta/load027
  5. STAR Protoc. 2023 Aug 24. pii: S2666-1667(23)00496-3. [Epub ahead of print]4(3): 102529
      Autophagy, a catabolic process governing cellular and energy homeostasis, is essential for cell survival and human health. Here, we present a protocol for generating autophagy-deficient (ATG5-/-) human neurons from human embryonic stem cell (hESC)-derived neural precursors. We describe steps for analyzing loss of autophagy by immunoblotting. We then detail analysis of cell death by luminescence-based cytotoxicity assay and fluorescence-based TUNEL staining. This hESC-based experimental platform provides a genetic knockout model for undertaking autophagy studies relevant to human biology. For complete details on the use and execution of this protocol, please refer to Sun et al. (2023).1.
    Keywords:  Cell Biology; Cell Culture; Cell Differentiation; Cell-Based Assays; Stem Cells
    DOI:  https://doi.org/10.1016/j.xpro.2023.102529
  6. J Biomed Sci. 2023 Aug 21. 30(1): 70
      BACKGROUND: Myoclonic epilepsy with ragged-red fibers (MERRF) syndrome is a rare inherited mitochondrial disease mainly caused by the m.8344A > G mutation in mitochondrial tRNALys gene, and usually manifested as complex neurological disorders and muscle weakness. Currently, the pathogenic mechanism of this disease has not yet been resolved, and there is no effective therapy for MERRF syndrome. In this study, MERRF patients-derived iPSCs were used to model patient-specific neurons for investigation of the pathogenic mechanism of neurological disorders in mitochondrial disease.METHODS: MERRF patient-derived iPSCs were differentiated into excitatory glutamatergic neurons to unravel the effects of the m.8344A > G mutation on mitochondrial bioenergetic function, neural-lineage differentiation and neuronal function. By the well-established differentiation protocol and electrophysiological activity assay platform, we examined the pathophysiological behaviors in cortical neurons of MERRF patients.
    RESULTS: We have successfully established the iPSCs-derived neural progenitor cells and cortical-like neurons of patients with MERRF syndrome that retained the heteroplasmy of the m.8344A > G mutation from the patients' skin fibroblasts and exhibited the phenotype of the mitochondrial disease. MERRF neural cells harboring the m.8344A > G mutation exhibited impaired mitochondrial bioenergetic function, elevated ROS levels and imbalanced expression of antioxidant enzymes. Our findings indicate that neural immaturity and synaptic protein loss led to the impairment of neuronal activity and plasticity in MERRF neurons harboring the m.8344A > G mutation. By electrophysiological recordings, we monitored the in vivo neuronal behaviors of MERRF neurons and found that neurons harboring a high level of the m.8344A > G mutation exhibited impairment of the spontaneous and evoked potential-stimulated neuronal activities.
    CONCLUSIONS: We demonstrated for the first time the link of mitochondrial impairment and synaptic dysfunction to neurological defects through impeding synaptic plasticity in excitatory neurons derived from iPSCs of MERRF patients harboring the m.8344A > G mutation. This study has provided new insight into the pathogenic mechanism of the tRNALys gene mutation of mtDNA, which is useful for the development of a patient-specific iPSCs platform for disease modeling and screening of new drugs to treat patients with MERRF syndrome.
    Keywords:  AMPARs; Disease modeling; Electrophysiological activity; Excitatory neurons; MERRF syndrome; Neurological defect; Synaptic plasticity; Synaptophysin; iPSCs; mtDNA mutation
    DOI:  https://doi.org/10.1186/s12929-023-00966-8
  7. Int J Mol Sci. 2023 Aug 08. pii: 12580. [Epub ahead of print]24(16):
      Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.
    Keywords:  LHON; Leber’s hereditary optic neuropathy; biomarker; fibroblasts; idebenone; mtDNA; responsiveness
    DOI:  https://doi.org/10.3390/ijms241612580
  8. Reprod Sci. 2023 Aug 21.
      Mitochondria are energy provider organelles in eukaryotic cells that contain their own specific genome. This review addresses structural and functional properties of mitochondria, focusing on recent discoveries about the changes in quality and number of mitochondria per cell during oocyte development. We highlight how oocyte mitochondria exhibit stage-specific morphology and characteristics at different stages of development, in sharp contrast to the elongated mitochondria present in somatic cells. We then evaluate the latest transcriptomic data to elucidate the complex functions of mitochondria during oocyte maturation and the impact of mitochondria on oocyte development. Finally, we describe the methodological progress of mitochondrial replacement therapy to rescue oocytes with developmental disorders or mitochondrial diseases, hoping to provide a guiding reference to future clinical applications.
    Keywords:  Mitochondria; Mitochondria distribution; Oocyte maturation; Transcriptome; mtDNA copy number
    DOI:  https://doi.org/10.1007/s43032-023-01331-8
  9. Genes (Basel). 2023 Aug 19. pii: 1654. [Epub ahead of print]14(8):
      Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by a GAA repeat in the intron 1 of the frataxin gene (FXN) leading to a lower expression of the frataxin protein. The YG8sR mice are Knock-Out (KO) for their murine frataxin gene but contain a human frataxin transgene derived from an FRDA patient with 300 GAA repeats. These mice are used as a FRDA model but even with a low frataxin concentration, their phenotype is mild. We aimed to find an optimized mouse model with a phenotype comparable to the human patients to study the impact of therapy on the phenotype. We compared two mouse models: the YG8sR injected with an AAV. PHP.B coding for a shRNA targeting the human frataxin gene and the YG8-800, a new mouse model with a human transgene containing 800 GAA repeats. Both mouse models were compared to Y47R mice containing nine GAA repeats that were considered healthy mice. Behavior tests (parallel rod floor apparatus, hanging test, inverted T beam, and notched beam test) were carried out from 2 to 11 months and significant differences were noticed for both YG8sR mice injected with an anti-FXN shRNA and the YG8-800 mice compared to healthy mice. In conclusion, YG8sR mice have a slight phenotype, and injecting them with an AAV-PHP.B expressing an shRNA targeting frataxin does increase their phenotype. The YG8-800 mice have a phenotype comparable to the human ataxic phenotype.
    Keywords:  Friedreich ataxia; frataxin; mouse model; phenotype; shRNA
    DOI:  https://doi.org/10.3390/genes14081654
  10. iScience. 2023 Aug 18. 26(8): 107446
      Nephronophthisis-like nephropathy-1 (NPHPL1) is a rare ciliopathy, caused by mutations of XPNPEP3. Despite a well-described monogenic etiology, the pathogenesis of XPNPEP3 associated with mitochondrial and ciliary function remains elusive. Here, we identified novel compound heterozygous mutations in NPHPL1 patients with renal lesion only or with extra bone cysts together. Patient-derived lymphoblasts carrying c.634G>A and c.761G>T together exhibit elevated mitochondrial XPNPEP3 levels via the reduction of mRNA degradation, leading to mitochondrial dysfunction in both urine tubular epithelial cells and lymphoblasts from patient. Mitochondrial XPNPEP3 was co-immunoprecipitated with respiratory chain complex I and was required for the stability and activity of complex I. Deletion of Xpnpep3 in mice resulted in lower activity of complex I, elongated primary cilium, and predisposition to tubular dilation and fibrosis under stress. Our findings provide valuable insights into the mitochondrial functions involved in the pathogenesis of NPHP.
    Keywords:  cell biology; disease; human Genetics
    DOI:  https://doi.org/10.1016/j.isci.2023.107446
  11. Nature. 2023 Aug 23.
      Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.
    DOI:  https://doi.org/10.1038/s41586-023-06441-6
  12. Biochem Biophys Res Commun. 2023 Aug 20. pii: S0006-291X(23)00978-6. [Epub ahead of print]678 45-61
      Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
    Keywords:  Cellular stress; Mitochondrial crosstalk; Mitochondrial functions; Mitochondrial signaling transduction
    DOI:  https://doi.org/10.1016/j.bbrc.2023.08.032
  13. Sci Rep. 2023 Aug 23. 13(1): 13753
    First Korean Stroke Genetics Association Research (The FirstKSGAR) study
      We aimed to investigate whether mitochondrial dysfunction in extracellular cerebrospinal fluid (CSF), which is associated with autophagy and mitophagy, might be involved in neurological outcomes in adult patients with hemorrhagic moyamoya disease (MMD) whose pathogenesis related to poor outcomes is not well-known. CSF samples were collected from 43 adult MMD patients and analyzed according to outcomes at 3 months. Fluorescence-activated cell sorter analysis (FACS) and the JC-1 red/green ratio were used to assess mitochondrial cells and intact mitochondrial membrane potential (MMP). We performed quantitative real-time polymerase chain reaction and Western blotting analyses of autophagy and mitophagy-related markers, including HIF1α, ATG5, pBECN1, BECN1, BAX, BNIP3L, DAPK1, and PINK1. Finally, FACS analysis with specific fluorescence-conjugated antibodies was performed to evaluate the potential cellular origin of CSF mitochondrial cells. Twenty-seven females (62.8%) with a mean age of 47.4 ± 9.7 years were included in the study. Among 43 patients with hemorrhagic MMD, 23 (53.5%) had poor outcomes. The difference in MMP was evident between the two groups (2.4 ± 0.2 in patients with poor outcome vs. 3.5 ± 0.4 in patients with good outcome; p = 0.02). A significantly higher expression (2-ΔCt) of HIF1α, ATG5, DAPK1 followed by BAX and BNIP3L mRNA and protein was also observed in poor-outcome patients compared to those with good outcomes. Higher percentage of vWF-positive mitochondria, suggesting endothelial cell origins, was observed in patients with good outcome compared with those with poor outcome (25.0 ± 1.4% in patients with good outcome vs. 17.5 ± 1.5% in those with poor outcome; p < 0.01). We observed the association between increased mitochondrial dysfunction concomitant with autophagy and mitophagy in CSF cells and neurological outcomes in adult patients with hemorrhagic MMD. Further prospective multicenter studies are needed to determine whether it has a diagnostic value for risk prediction.
    DOI:  https://doi.org/10.1038/s41598-023-40747-9
  14. Front Physiol. 2023 ;14 1184060
      Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells' mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
    Keywords:  glaucoma; mitochondrial dysfunction; mitochondrial therapeutics; neurodegeneration; oxidative Stress
    DOI:  https://doi.org/10.3389/fphys.2023.1184060
  15. Aging (Albany NY). 2023 Aug 22. undefined
      
    Keywords:  biomarkers; frailty; mitochondrial dysfunction; mtDNA; sarcopenia
    DOI:  https://doi.org/10.18632/aging.204998
  16. Mov Disord. 2023 Aug 21.
      BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by mutations in the C19orf12 gene. MPAN typically appears in the first two decades of life and presents with progressive dystonia-parkinsonism, lower motor neuron signs, optic atrophy, and abnormal iron deposits predominantly in the basal ganglia. MPAN, initially considered as a strictly autosomal recessive disease (AR), turned out to be also dominantly inherited (AD).OBJECTIVES: Our aim was to better characterize the clinical, molecular, and functional spectra associated with such dominant pathogenic heterozygous C19orf12 variants.
    METHODS: We collected clinical, imaging, and molecular information of eight individuals from four AD-MPAN families and obtained brain neuropathology results for one. Functional studies, focused on energy and iron metabolism, were conducted on fibroblasts from AD-MPAN patients, AR-MPAN patients, and controls.
    RESULTS: We identified four heterozygous C19orf12 variants in eight AD-MPAN patients. Two of them carrying the familial variant in mosaic displayed an atypical late-onset phenotype. Fibroblasts from AD-MPAN showed more severe alterations of iron storage metabolism and autophagy compared to AR-MPAN cells.
    CONCLUSION: Our data add strong evidence of the realness of AD-MPAN with identification of novel monoallelic C19orf12 variants, including at the mosaic state. This has implications in diagnosis procedures. We also expand the phenotypic spectrum of MPAN to late onset atypical presentations. Finally, we demonstrate for the first time more drastic abnormalities of iron metabolism and autophagy in AD-MPAN than in AR-MPAN. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
    Keywords:  C19orf12; NBIA; autosomal dominant MPAN; late-onset MPAN; mosaicism
    DOI:  https://doi.org/10.1002/mds.29576
  17. Life Sci Alliance. 2023 Nov;pii: e202301965. [Epub ahead of print]6(11):
      The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
    DOI:  https://doi.org/10.26508/lsa.202301965
  18. J Cell Mol Med. 2023 Aug 21.
      Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1(a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.
    Keywords:  OPA1; P53; apoptosis; cristae; dilated cardiomyopathy; fusion
    DOI:  https://doi.org/10.1111/jcmm.17918
  19. Mol Metab. 2023 Aug 23. pii: S2212-8778(23)00127-8. [Epub ahead of print] 101793
      OBJECTIVE: Cardiorespiratory fitness (CRF) is tightly linked with health and longevity and is implicated in metabolic flexibility and substrate metabolism. The high capacity runner (HCR) and low capacity runner (LCR) rat lines are a genetically heterogeneous rat model selected and bred for CRF that reflect CRF in humans by exhibiting differences in nutrient handling. This study aims to differentiate the intrinsic substrate preference of the HCR compared to LCR rats to better understand the intersection of mitochondrial respiration and intrinsic CRF.METHODS: We performed bulk skeletal muscle RNA-Sequencing on male and female HCR and LCR rats and assessed the effect of rat line on mitochondrial gene expression pathways using the MitoCarta3.0 database. In a separate cohort of rats, mitochondria were isolated from skeletal and cardiac muscle and maximal oxidation rates were measured using an Oroboros O2k when provided either pyruvate or fatty acid substrates.
    RESULTS: The expression of mitochondrial genes are significantly upregulated in HCR skeletal muscle in both male and female rats. In respirometry experiments, fatty acid oxidative capacities were greater in HCR compared to LCR, and male compared to female rats, as a function of both mitochondrial quality and mitochondrial density. This effect was greater in the skeletal muscle than in the heart. Pyruvate oxidation did not differ significantly between lines.
    CONCLUSIONS: The capacity for increased fatty acid oxidation in the HCR rat is a result of selection for running capacity and is likely a key contributor to the healthy metabolic phenotype of individuals with high CRF.
    Keywords:  Mitochondria; cardiorespiratory fitness; metabolism; muscle; oxidation; transcriptomics
    DOI:  https://doi.org/10.1016/j.molmet.2023.101793
  20. Nature. 2023 Aug 23.
      Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.
    DOI:  https://doi.org/10.1038/s41586-023-06462-1
  21. Curr Med Chem. 2023 Aug 22.
      Mitochondria are the energy factories of cells, and their functions are closely related to cell homeostasis. The mitochondrial unfolded protein response (mtUPR) is a newly discovered mechanism for regulating mitochondrial homeostasis. When unfolded/misfolded proteins accumulate in mitochondria, the mitochondria release signals that regulate the transcription of certain proteins in the nucleus, thereby inducing the correct folding or degradation of proteins in mitochondria. Many studies have also shown that an abnormality of mtUPR is closely related to the occurrence and development of diseases. Here, we summarized the pathways regulating mtUPR signaling and reviewed the research progress on mtUPR in diseases. Finally, we summarized the currently identified agonists and inhibitors of the mtUPR and discussed the potential of the mtUPR as a therapeutic target for diseases.
    Keywords:  ATFS-1; aging; kidney diseases; mitochondria; mtUPR
    DOI:  https://doi.org/10.2174/0929867331666230822095924
  22. Front Mol Biosci. 2023 ;10 1241225
      Doxorubicin (DOX) is an extensively used chemotherapeutic agent that can cause severe and frequent cardiotoxicity, which limits its clinical application. Although there have been extensive researches on the cardiotoxicity caused by DOX, there is still a lack of effective treatment. It is necessary to understand the molecular mechanism of DOX-induced cardiotoxicity and search for new therapeutic targets which do not sacrifice their anticancer effects. Mitochondria are considered to be the main target of cardiotoxicity caused by DOX. The imbalance of mitochondrial dynamics characterized by increased mitochondrial fission and inhibited mitochondrial fusion is often reported in DOX-induced cardiotoxicity, which can result in excessive ROS production, energy metabolism disorders, cell apoptosis, and various other problems. Also, mitochondrial dynamics disorder is related to tumorigenesis. Surprisingly, recent studies show that targeting mitochondrial dynamics proteins such as DRP1 and MFN2 can not only defend against DOX-induced cardiotoxicity but also enhance or not impair the anticancer effect. Herein, we summarize mitochondrial dynamics disorder in DOX-induced cardiac injury. Furthermore, we provide an overview of current pharmacological and non-pharmacological interventions targeting proteins involved in mitochondrial dynamics to alleviate cardiac damage caused by DOX.
    Keywords:  anticancer effect; cardiotoxicity; doxorubicin (Dox); mitochondrial dynamics; pharmacological and non-pharmacological interventions
    DOI:  https://doi.org/10.3389/fmolb.2023.1241225
  23. Expert Rev Neurother. 2023 Aug 21. 1-16
      INTRODUCTION: Duchenne muscular dystrophy (DMD) is one of the most severe and devastating neuromuscular hereditary diseases with a male newborn incidence of 20 000 cases each year. The disease caused by mutations (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) in the DMD gene, progressively leads to muscle wasting and loss of ambulation. This situation is painful for both patients and their families, calling for an emergent need for effective treatments.AREAS COVERED: In this review, the authors describe the state of the gene therapy approach in clinical trials for DMD. This therapeutics included gene replacement, gene substitution, RNA-based therapeutics, readthrough mutation, and the CRISPR approach.
    EXPERT OPINION: Only a few drug candidates have yet been granted conditional approval for the treatment of DMD. Most of these therapies have only a modest capability to restore the dystrophin or improve muscle function, suggesting an important unmet need in the development of DMD therapeutics. Complementary genes and cellular therapeutics need to be explored to both restore dystrophin, improve muscle function, and efficiently reconstitute the muscle fibers in the advanced stage of the disease.
    Keywords:  Asos; DMD; Gene therapy; dystrophin; gene substitution; gene transfer; readthrough mutation; snRNA
    DOI:  https://doi.org/10.1080/14737175.2023.2249607
  24. Sci Adv. 2023 Aug 25. 9(34): eadh2501
      Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17FNV). eSox17FNV efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17FNV acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.
    DOI:  https://doi.org/10.1126/sciadv.adh2501
  25. Cell Rep. 2023 Aug 24. pii: S2211-1247(23)01043-4. [Epub ahead of print]42(9): 113032
      Mitochondrial dysfunction is a critical process in renal epithelial cells upon kidney injury. While its implication in kidney disease progression is established, the mechanisms modulating it remain unclear. Here, we describe the role of Lipocalin-2 (LCN2), a protein expressed in injured tubular cells, in mitochondrial dysfunction. We show that LCN2 expression decreases mitochondrial mass and function and induces mitochondrial fragmentation. Importantly, while LCN2 expression favors DRP1 mitochondrial recruitment, DRP1 inhibition antagonizes LCN2's effect on mitochondrial shape. Remarkably, LCN2 promotes mitochondrial fragmentation independently of its secretion or transport iron activity. Mechanistically, intracellular LCN2 expression increases mTOR activity, and rapamycin inhibits LCN2's effect on mitochondrial shape. In vivo, Lcn2 gene inactivation prevents mTOR activation and mitochondrial length decrease observed upon ischemia-reperfusion-induced kidney injury (IRI) in Lcn2+/+ mice. Our data identify LCN2 as a key regulator of mitochondrial dynamics and further elucidate the mechanisms leading to mitochondrial dysfunction.
    Keywords:  CP: Metabolism; Lipocalin-2; kidney; mTOR pathway; mitochondrial dynamics
    DOI:  https://doi.org/10.1016/j.celrep.2023.113032
  26. Neurol Sci. 2023 Aug 25.
      INTRODUCTION: Mitochondrial alterations are a common finding in muscle biopsy of sporadic inclusion body myositis (s-IBM) and polymyositis with mitochondrial pathology (PM-Mito). Both disorders generally have poor treatment response. Nevertheless, mitochondrial myopathology has been rarely reported in dermatomyositis (DM) outside areas of perifascicular atrophy and a relationship with therapeutic outcome is not established.METHODS: We report on clinical, immunological, radiological, and myopathological findings of a case of severe, treatment-refractory anti-Mi-2-positive DM.
    RESULTS: A 77-year-old woman developed anti-Mi-2 DM with severe diffuse muscle weakness associated with abundant mitochondrial abnormalities at muscle biopsy, beside the typical features of inflammatory myopathy. The patient was poorly responsive to multiple-line therapies and finally anti-JAK (anti-Janus activated kinase) was administered, leading to partial clinical improvement.
    DISCUSSION: Given the usual satisfactory treatment response and favorable outcome of anti-Mi-2 DM, we suppose that mitochondrial dysfunction on muscle biopsy could represent a marker of disease severity in DM, predicting a worse response to treatment and a poor clinical outcome. JAK-inhibitors could represent a good treatment option in refractory anti-Mi-2 DM with mitochondrial abnormalities.
    Keywords:  Anti-Mi-2 dermatomyositis; JAK-inhibitors; Refractory dermatomyositis; Skeletal muscle mitochondrial pathology
    DOI:  https://doi.org/10.1007/s10072-023-07035-w
  27. Cells. 2023 Aug 17. pii: 2084. [Epub ahead of print]12(16):
      Idiopathic pulmonary fibrosis (IPF) is characterized by an aberrant repair response with uncontrolled turnover of extracellular matrix involving mesenchymal cell phenotypes, where lung resident mesenchymal stem cells (LRMSC) have been supposed to have an important role. However, the contribution of LRMSC in lung fibrosis is not fully understood, and the role of LRMSC in IPF remains to be elucidated. Here, we performed transcriptomic and functional analyses on LRMSC isolated from IPF and control patients (CON). Both over-representation and gene set enrichment analyses indicated that oxidative phosphorylation is the major dysregulated pathway in IPF LRMSC. The most relevant differences in biological processes included complement activation, mesenchyme development, and aerobic electron transport chain. Compared to CON LRMSC, IPF cells displayed impaired mitochondrial respiration, lower expression of genes involved in mitochondrial dynamics, and dysmorphic mitochondria. These changes were linked to an impaired autophagic response and a lower mRNA expression of pro-apoptotic genes. In addition, IPF TGFβ-exposed LRMSC presented different expression profiles of mitochondrial-related genes compared to CON TGFβ-treated cells, suggesting that TGFβ reinforces mitochondrial dysfunction. In conclusion, these results suggest that mitochondrial dysfunction is a major event in LRMSC and that their occurrence might limit LRMSC function, thereby contributing to IPF development.
    Keywords:  apoptosis; idiopathic pulmonary fibrosis; lung resident mesenchymal stem cell; mitochondria; mitophagy; oxidative phosphorylation; transforming growth factor β
    DOI:  https://doi.org/10.3390/cells12162084
  28. J Mol Cell Cardiol. 2023 Aug 19. pii: S0022-2828(23)00138-4. [Epub ahead of print]183 27-41
      Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.
    Keywords:  Heart failure; Mitochondria; Mitochondrial biogenesis and dynamics; Mitochondrial respiration; Myocardial remodeling; Peroxisome proliferator-activated receptor δ
    DOI:  https://doi.org/10.1016/j.yjmcc.2023.08.005