bims-mitmed Biomed News
on Mitochondrial medicine
Issue of 2024‒08‒25
eighteen papers selected by
Dario Brunetti, Fondazione IRCCS Istituto Neurologico



  1. Neuromuscul Disord. 2024 Aug 02. pii: S0960-8966(24)00146-9. [Epub ahead of print]43 14-19
      Myopathy is a common manifestation in mitochondrial disorders, but the pathomechanisms are still insufficiently studied in children. Here, we report a severe, progressive mitochondrial myopathy in a four-year-old child, who died at eight years. He developed progressive loss of muscle strength with nocturnal hypoventilation and dilated cardiomyopathy. Skeletal muscle showed ragged red fibers and severe combined respiratory chain deficiency. Mitochondrial DNA sequencing revealed a novel m.5670A>G mutation in mitochondrial tRNAAsn (MTTN) with 88 % heteroplasmy in muscle. The proband also had systemic NAD+ deficiency but rescuing this with the NAD+ precursor niacin did not stop disease progression. Targeted metabolomics revealed an overall shift of metabolism towards controls after niacin supplementation, with normalized tryptophan metabolites and lipid-metabolic markers, but most amino acids did not respond to niacin therapy. To conclude, we report a new MTTN mutation, secondary NAD+ deficiency in childhood-onset mitochondrial myopathy with metabolic but meager clinical response to niacin supplementation.
    Keywords:  MTTN; Mitochondrial myopathy; NAD+ deficiency; Niacin; Niacin supplementation; tRNA-Asn
    DOI:  https://doi.org/10.1016/j.nmd.2024.07.005
  2. Nature. 2024 Aug;632(8027): 987-988
      
    Keywords:  Biochemistry; Cell biology
    DOI:  https://doi.org/10.1038/d41586-024-02528-w
  3. Front Cell Dev Biol. 2024 ;12 1468818
      
    Keywords:  mitochondria in development and differentiation; mitochondria quality control; mitochondrial disorders; mitochondrial dysfunction in pathologies; mitochondrial genome
    DOI:  https://doi.org/10.3389/fcell.2024.1468818
  4. JCI Insight. 2024 Jul 18. pii: e177152. [Epub ahead of print]9(16):
      Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
    Keywords:  Cardiology; Metabolism; Mitochondria; Neurological disorders
    DOI:  https://doi.org/10.1172/jci.insight.177152
  5. EMBO Mol Med. 2024 Aug 21.
      Oxidative Phosphorylation (OXPHOS) defects can cause severe encephalopathies and no effective treatment exists for these disorders. To assess the ability of gene replacement to prevent disease progression, we subjected two different CNS-deficient mouse models (Ndufs3/complex I or Cox10/complex IV conditional knockouts) to gene therapy. We used retro-orbitally injected AAV-PHP.eB to deliver the missing gene to the CNS of these mice. In both cases, we observed survival extension from 5-6 to more than 15 months, with no detectable disease phenotypes. Likewise, molecular and cellular phenotypes were mostly recovered in the treated mice. Surprisingly, these remarkable phenotypic improvements were achieved with only ~30% of neurons expressing the transgene from the AAV-PHP.eB vector in the conditions used. These findings suggest that neurons lacking OXPHOS are protected by the surrounding neuronal environment and that partial compensation for neuronal OXPHOS loss can have disproportionately positive effects.
    Keywords:  Gene Therapy; Mitochondria; Mitochondrial Disease; Oxidative Phosphorylation
    DOI:  https://doi.org/10.1038/s44321-024-00111-4
  6. Neurobiol Dis. 2024 Aug 20. pii: S0969-9961(24)00244-4. [Epub ahead of print] 106644
      Mitochondrial glutamyl-aminoacyl tRNA synthetase deficiency, stemming from biallelic mutations in the EARS2 gene, was first described in 2012. With <50 cases reported globally, this condition exhibits a distinct phenotype of neonatal or childhood-onset, often referred to as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). It has also been one of the few reversible mitochondrial disorders described. The natural history of these patients is poorly documented, ranging from clinical and radiological improvement to early death. Herein, we detail three cases from our centre, including follow-up on the Portuguese patient reported by Steenweg et al., These cases illustrate the phenotypic spectrum: i) rapidly progressive neonatal presentation with lactic acidemia and corpus callosum agenesis, leading to early death; ii) early onset with a severe, slowly progressive course; iii) early onset with a milder phenotype, showing some improvement and mild neurological symptoms. Additionally, we conducted a systematic literature review on cases of EARS2-deficient patients, focusing on clinical manifestations, laboratory findings, radiological aspects, and disease progression over time, along with respective data analysis. "Patients with EARS2 deficiency typically present within the first year of life with a well-defined neurometabolic disorder picture, often including hypotonia and/or spasticity, along with neurodevelopmental delay or regression. There are no pathognomonic features specific to EARS2 deficiency, and no genotype-phenotype correlation has been identified." Comparing to initial characterization by Steenweg et al., this analysis reveals an expanded disease spectrum. We propose a novel strategy for clustering phenotypes into severe, moderate, or mild disease based on initial presentation, seemingly correlating with disease progression. The paucity of data on the disease's natural history highlights the need for a multicentric approach to enhance understanding and management. TAKE-HOME MESSAGE: Analysis of all cases published with EARS2 deficiency allows for establish disease spectrum and a novel strategy for clustering phenotypes which correlate to disease progression.
    Keywords:  EARS2 protein; Glutamyl-tRNA synthetase 2; Human; Mitochondrial; Mitochondrial diseases
    DOI:  https://doi.org/10.1016/j.nbd.2024.106644
  7. Cell Mol Life Sci. 2024 Aug 19. 81(1): 357
      SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.
    Keywords:  CG8632; Electron transport chain; GH/IGF; ZnT49B; ZnT9
    DOI:  https://doi.org/10.1007/s00018-024-05377-y
  8. Nat Commun. 2024 Aug 22. 15(1): 7027
      Expansion of the glutamine tract (poly-Q) in the protein huntingtin (HTT) causes the neurodegenerative disorder Huntington's disease (HD). Emerging evidence suggests that mutant HTT (mHTT) disrupts brain development. To gain mechanistic insights into the neurodevelopmental impact of human mHTT, we engineered male induced pluripotent stem cells to introduce a biallelic or monoallelic mutant 70Q expansion or to remove the poly-Q tract of HTT. The introduction of a 70Q mutation caused aberrant development of cerebral organoids with loss of neural progenitor organization. The early neurodevelopmental signature of mHTT highlighted the dysregulation of the protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a transcription factor involved in mitochondrial integrated stress response. CHCHD2 repression was associated with abnormal mitochondrial morpho-dynamics that was reverted upon overexpression of CHCHD2. Removing the poly-Q tract from HTT normalized CHCHD2 levels and corrected key mitochondrial defects. Hence, mHTT-mediated disruption of human neurodevelopment is paralleled by aberrant neurometabolic programming mediated by dysregulation of CHCHD2, which could then serve as an early interventional target for HD.
    DOI:  https://doi.org/10.1038/s41467-024-51216-w
  9. Transgenic Res. 2024 Aug 19.
      The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
    Keywords:  Base editor; CRISPR; Epigenome editing; Genome editing; Integrase; Mitochondrial editing; Prime editor; Transposase
    DOI:  https://doi.org/10.1007/s11248-024-00404-x
  10. Proc Natl Acad Sci U S A. 2024 Aug 27. 121(35): e2402491121
      Activating Ca2+-sensitive enzymes of oxidative metabolism while preventing calcium overload that leads to mitochondrial and cellular injury requires dynamic control of mitochondrial Ca2+ uptake. This is ensured by the mitochondrial calcium uptake (MICU)1/2 proteins that gate the pore of the mitochondrial calcium uniporter (mtCU). MICU1 is relatively sparse in the heart, and recent studies claimed the mammalian heart lacks MICU1 gating of mtCU. However, genetic models have not been tested. We find that MICU1 is present in a complex with MCU in nonfailing human hearts. Furthermore, using murine genetic models and pharmacology, we show that MICU1 and MICU2 control cardiac mitochondrial Ca2+ influx, and that MICU1 deletion alters cardiomyocyte mitochondrial calcium signaling and energy metabolism. MICU1 loss causes substantial compensatory changes in the mtCU composition and abundance, increased turnover of essential MCU regulator (EMRE) early on and, later, of MCU, that limit mitochondrial Ca2+ uptake and allow cell survival. Thus, both the primary consequences of MICU1 loss and the ensuing robust compensation highlight MICU1's relevance in the beating heart.
    Keywords:  MICU1; MICU2; calcium; cardiomyocyte; mitochondrial calcium uniporter gating
    DOI:  https://doi.org/10.1073/pnas.2402491121
  11. Orphanet J Rare Dis. 2024 Aug 21. 19(1): 305
      BACKGROUND: Leigh syndrome (LS) is a common mitochondrial disease caused by mutations in both mitochondrial and nuclear genes. Isoleucyl-tRNA synthetase 2 (IARS2) encodes mitochondrial isoleucine-tRNA synthetase, and variants in IARS2 have been reported to cause LS. However, the pathogenic mechanism of IARS2 variants is still unclear.METHODS: Two unrelated patients, a 4-year-old boy and a 5-year-old boy diagnosed with LS, were recruited, and detailed clinical data were collected. The DNA of the patients and their parents was isolated from the peripheral blood for the identification of pathogenic variants using next-generation sequencing and Sanger sequencing. The ClustalW program, allele frequency analysis databases (gnomAD and ExAc), and pathogenicity prediction databases (Clinvar, Mutation Taster and PolyPhen2) were used to predict the conservation and pathogenicity of the variants. The gene expression level, oxygen consumption rate (OCR), respiratory chain complex activity, cellular adenosine triphosphate (ATP) production, mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (ROS) levels were measured in patient-derived lymphocytes and IARS2-knockdown HEK293T cells to evaluate the pathogenicity of the variants.
    RESULTS: We reported 2 unrelated Chinese patients manifested with LS who carried biallelic IARS2 variants (c.1_390del and c.2450G > A from a 4-year-old boy, and c.2090G > A and c.2122G > A from a 5-year-old boy), of which c.1_390del and c.2090G > A were novel. Functional studies revealed that the patient-derived lymphocytes carrying c.1_390del and c.2450G > A variants exhibited impaired mitochondrial function due to severe mitochondrial complexes I and III deficiencies, which was also found in IARS2-knockdown HEK293T cells. The compensatory experiments in vitro cell models confirmed the pathogenicity of IARS2 variants since re-expression of wild-type IARS2 rather than mutant IARS2 could rescue complexes I and III deficiency, oxygen consumption, and cellular ATP content in IARS2 knockdown cells.
    CONCLUSION: Our results not only expand the gene mutation spectrum of LS, but also reveal for the first time the pathogenic mechanism of IARS2 variants due to a combined deficiency of mitochondrial complexes I and III, which is helpful for the clinical diagnosis of IARS2 mutation-related diseases.
    Keywords:   IARS2 ; Leigh syndrome; Mitochondrial disease; OXPHOS
    DOI:  https://doi.org/10.1186/s13023-024-03310-x
  12. Biochim Biophys Acta Mol Basis Dis. 2024 Aug 15. pii: S0925-4439(24)00463-0. [Epub ahead of print]1870(8): 167470
      Aging disrupts brain function, leading to cognitive decline and neurodegenerative diseases. Senescent astrocytes, a hallmark of aging, contribute to this process through unknown mechanisms. This study investigates how senescence impacts astrocytic mitochondrial dynamics, which are critical for brain health. Our research, conducted using aged mouse brains, represents the first evidence of morphologically damaged mitochondria in astrocytes, along with functional alterations in mitochondrial respiration. In vitro experiments revealed that senescent astrocytes exhibit an increase in mitochondrial fragmentation and impaired mitophagy. Concurrently, there was an upregulation of mitochondrial biogenesis, indicating a compensatory response to mitochondrial damage. Importantly, these senescent astrocytes were more susceptible to mitochondrial stress, a vulnerability reversed by rapamycin treatment. These findings suggest a potential link between senescence, impaired mitochondrial quality control, and increased susceptibility to mitochondrial stress in astrocytes. Overall, our study highlights the importance of addressing mitochondrial dysfunction and senescence-related changes in astrocytes as a promising approach for developing therapies to counter age-related neurodegeneration and improve brain health.
    Keywords:  Aging; Astrocytes; Mitochondria and senescence
    DOI:  https://doi.org/10.1016/j.bbadis.2024.167470
  13. Trends Mol Med. 2024 Aug 16. pii: S1471-4914(24)00194-1. [Epub ahead of print]
      Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
    Keywords:  RNA interference; clinical trials; genetic therapies; hereditary ataxia; oligonucleotides
    DOI:  https://doi.org/10.1016/j.molmed.2024.07.008
  14. Biochem Pharmacol. 2024 Aug 17. pii: S0006-2952(24)00478-7. [Epub ahead of print]229 116495
      Doxorubicin (DOX)-induced cardiac damage remains a leading cause of death amongst cancer survivors. DOX-induced cardiotoxicity (DIC) is mediated by disturbed mitochondrial dynamics, but it remains debated that the mechanisms by which DOX disrupted equilibrium between mitochondrial fission and fusion. In the present study, we observed that DOX induced mitochondrial elongation in multiple cardiovascular cell lines. Mechanically, DOX not only downregulated the mitochondrial fusion proteins including Mitofusin 1/2 (MFN1/2) and Optic atrophy 1 (OPA1), but also induced lower motility of dynamin-related protein 1(Drp1) and its phosphorylation on 637 serine, which could inhibit mitochondrial fission. Interestingly, DOX failed to induce mitochondrial elongation in cardiomyocytes co-treated with protein kinase A (PKA) inhibitor H89 or expressing phosphodeficient Drp1-S637A variants. Besides, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was able to blocked the mitochondrial elongation induced by DOX treatment, which could be phenocopied by OPA1 knockdown. Therefore, we speculated that DOX inhibited mitochondrial fission and fusion simultaneously, yet enabled mitochondrial fusion dominate the mitochondrial dynamics, resulting in mitochondrial elongation as the main manifestation. Notably, blocking mitochondrial elongation by inhibiting Drp1-S637 phosphorylation or OPA1 knockdown aggravated DOX-induced cardiomyocytes death. Based on these results, we propose a novel mechanistic model that DOX-induced mitochondrial elongation is attributed to the equilibrium disturbance of mitochondrial dynamics, which serves as an adaptive response and confers protection against DIC.
    Keywords:  Cardiotoxicity; Doxorubicin; Fission; Fusion; Mitochondrial dynamics
    DOI:  https://doi.org/10.1016/j.bcp.2024.116495
  15. BMC Res Notes. 2024 Aug 16. 17(1): 228
      OBJECTIVES: Cox10 is an enzyme required for the activity of cytochrome c oxidase. Humans who lack at least one functional copy of Cox10 have a form of Leigh Syndrome, a genetic disease that is usually fatal in infancy. As more human genomes are sequenced, new alleles are being discovered; whether or not these alleles encode functional proteins remains unclear. Thus, we set out to measure the phenotypes of many human Cox10 variants by expressing them in yeast cells.RESULTS: We successfully expressed the reference sequence and 25 variants of human Cox10 in yeast. We quantitated the ability of these variants to support growth on nonfermentable media and directly measured cytochrome c oxidase activity. 11 of these Cox10 variants supported approximately half or more the cytochrome c oxidase activity compared to the reference sequence. All of the strains containing those 11 variants also grew robustly using a nonfermentable carbon source. Cells expressing the other variants showed low cytochrome c oxidase activity and failed to grow on nonfermentable media.
    Keywords:   Saccharomyces cerevisiae ; Cox10; Cytochrome c oxidase; Leigh syndrome
    DOI:  https://doi.org/10.1186/s13104-024-06879-5
  16. Autophagy. 2024 Aug 22.
      Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.
    Keywords:  Alzheimer; anaplerotic metabolism; autophagy; phospholipid biosynthesis; phosphorylated MAPT/tau; tauopathy
    DOI:  https://doi.org/10.1080/15548627.2024.2392408
  17. Transl Oncol. 2024 Aug 19. pii: S1936-5233(24)00211-0. [Epub ahead of print]49 102084
      The steady accumulation of senescent cells with aging creates tissue environments that aid cancer evolution. Aging cell states are highly heterogeneous. 'Deep senescent' cells rely on healthy mitochondria to fuel a strong proinflammatory secretome, including cytokines, growth and transforming signals. Yet, the physiological triggers of senescence such as reactive oxygen species (ROS) can also trigger mitochondrial dysfunction, and sufficient energy deficit to alter their secretome and cause chronic oxidative stress - a state termed Mitochondrial Dysfunction-Associated Senescence (MiDAS). Here, we offer a mechanistic hypothesis for the molecular processes leading to MiDAS, along with testable predictions. To do this we have built a Boolean regulatory network model that qualitatively captures key aspects of mitochondrial dynamics during cell cycle progression (hyper-fusion at the G1/S boundary, fission in mitosis), apoptosis (fission and dysfunction) and glucose starvation (reversible hyper-fusion), as well as MiDAS in response to SIRT3 knockdown or oxidative stress. Our model reaffirms the protective role of NAD+ and external pyruvate. We offer testable predictions about the growth factor- and glucose-dependence of MiDAS and its reversibility at different stages of reactive oxygen species (ROS)-induced senescence. Our model provides mechanistic insights into the distinct stages of DNA-damage induced senescence, the relationship between senescence and epithelial-to-mesenchymal transition in cancer and offers a foundation for building multiscale models of tissue aging.
    Keywords:  Boolean network model; Cell cycle; MiDAS; Mitochondrial ROS; Mitochondrial fusion/fission; NAD(+)
    DOI:  https://doi.org/10.1016/j.tranon.2024.102084