bims-mitper Biomed News
on Mitochondrial Permeabilization
Issue of 2022–09–11
28 papers selected by
Bradley Irizarry, Thomas Jefferson University



  1. Methods Cell Biol. 2022 ;pii: S0091-679X(22)00061-9. [Epub ahead of print]172 17-36
      Radiation therapy (RT) is well known for its capacity to mediate cytostatic and cytotoxic effects on malignant cells, largely reflecting the ability of ionizing radiation to cause direct and indirect damage to macromolecules including DNA and lipids. While low-dose RT generally causes limited cytotoxicity in an acute manner (as it imposes insufficient cellular damage to compromise homeostasis, or instead induces the delayed demise of cells that fail to complete mitosis successfully), high RT doses can mediate an acute wave of cell death that begins to manifest shortly (24-72h) after irradiation. Here, we provide two straightforward techniques to assess the acute cytotoxic effects of RT by the flow cytometry-assisted quantification of plasma membrane permeabilization (PMP, a late-stage manifestation of cell death) and either mitochondrial outer membrane permeabilization (MOMP) or phosphatidylserine (PS) externalization (two early-stage signs of cell death) in mouse mammary adenocarcinoma TS/A cells. With minor variations, the same protocols can be straightforwardly adapted to measure acute cell death responses as elicited by RT in a large panel of human and mouse cancer cells lines of different histological derivation.
    Keywords:  Annexin V; Apoptosis; DiOC(6)(3); Mitochondrial outer membrane permeabilization; Plasma membrane permeabilization; Propidium iodide
    DOI:  https://doi.org/10.1016/bs.mcb.2022.05.002
  2. iScience. 2022 Sep 16. 25(9): 104923
      Although it is reported that mitochondria-localized nuclear transcription factors (TFs) regulate mitochondrial processes such as apoptosis and mitochondrial transcription/respiration, the functions and mechanisms of mitochondrial dynamics regulated by mitochondria-localized nuclear TFs are yet to be fully characterized. Here, we identify STAT6 as a mitochondrial protein that is localized in the outer membrane of mitochondria (OMM). STAT6 in OMM inhibits mitochondrial fusion by blocking MFN2 dimerization. This implies that STAT6 has a critical role in mitochondrial dynamics. Moreover, mitochondrial accumulation of STAT6 in response to hypoxic conditions reveals that STAT6 is a regulator of mitochondrial processes including fusion/fission mechanisms.
    Keywords:  Biological sciences; Molecular biology; Molecular interaction; Natural sciences
    DOI:  https://doi.org/10.1016/j.isci.2022.104923
  3. Front Immunol. 2022 ;13 973089
      Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a form of acute-onset hypoxemic respiratory failure characterised by an acute, diffuse, inflammatory lung injury, and increased alveolar-capillary permeability, which is caused by a variety of pulmonary or nonpulmonary insults. Recently, aberrant mitochondria and mitochondrial DNA(mtDNA) level are associated with the development of ALI/ARDS, and plasma mtDNA level shows the potential to be a promising biomarker for clinical diagnosis and evaluation of lung injury severity. In mechanism, the mtDNA and its oxidised form, which are released from impaired mitochondria, play a crucial role in the inflammatory response and histopathological changes in the lung. In this review, we discuss mitochondrial outer membrane permeabilisation (MOMP), mitochondrial permeability transition pore(mPTP), extracellular vesicles (EVs), extracellular traps (ETs), and passive release as the principal mechanisms for the release of mitochondrial DNA into the cytoplasm and extracellular compartments respectively. Further, we explain how the released mtDNA and its oxidised form can induce inflammatory cytokine production and aggravate lung injury through the Toll-like receptor 9(TLR9) signalling, cytosolic cGAS-stimulator of interferon genes (STING) signalling (cGAS-STING) pathway, and inflammasomes activation. Additionally, we propose targeting mtDNA-mediated inflammatory pathways as a novel therapeutic approach for treating ALI/ARDS.
    Keywords:  ALI; ARDS; STING; TLR9; inflammasomes activation; mtDNA
    DOI:  https://doi.org/10.3389/fimmu.2022.973089
  4. J Cell Biol. 2022 Oct 03. pii: e202205104. [Epub ahead of print]221(10):
      Mitochondria are dynamic organelles that play essential roles in cell growth and survival. Processes of fission and fusion are critical for the distribution, segregation, and maintenance of mitochondria and their genomes (mtDNA). While recent work has revealed the significance of mitochondrial organization for mtDNA maintenance, the impact of mtDNA perturbations on mitochondrial dynamics remains less understood. Here, we develop a tool to induce mitochondria-specific DNA damage using a mitochondrial-targeted base modifying bacterial toxin, DarT. Following damage, we observe dynamic reorganization of mitochondrial networks, likely driven by mitochondrial dysfunction. Changes in the organization are associated with the loss of mtDNA, independent of mitophagy. Unexpectedly, perturbation to exonuclease function of mtDNA replicative polymerase, Mip1, results in rapid loss of mtDNA. Our data suggest that, under damage, partitioning of defective mtDNA and organelle are de-coupled, with emphasis on mitochondrial segregation independent of its DNA. Together, our work underscores the importance of genome maintenance on mitochondrial function, which can act as a modulator of organelle organization and segregation.
    DOI:  https://doi.org/10.1083/jcb.202205104
  5. Methods Cell Biol. 2022 ;pii: S0091-679X(22)00063-2. [Epub ahead of print]172 115-134
      When employed according to specific doses and fractionation schedules, radiation therapy (RT) elicits potent tumor-targeting immune responses that rely on the secretion of type I interferon (IFN) by irradiated cancer cells. Most often, this is initiated by the ability of RT to promote the cytosolic accumulation of double-stranded DNA (dsDNA) molecules, which are detected by cyclic GMP-AMP synthase (CGAS) to engage the stimulator of interferon response cGAMP interactor 1 (STING1)-dependent transactivation of type I IFN-coding genes via interferon regulatory factor 3 (IRF3). Here, we describe a simple protocol for the quantification of cytosolic dsDNA species by immunofluorescence microscopy coupled to automated image analysis, as enabled by precise sample processing conditions that permeabilize plasma-but not nuclear or inner mitochondrial-membranes. As compared to subcellular fractionation-based techniques, this approach is compatible with assessments in individual cells aimed at gauging inter-cellular heterogeneity, as well as subcellular tests including co-localization studies.
    Keywords:  CGAS; Cancer immunotherapy; FIJI; Type I interferon; mtDNA
    DOI:  https://doi.org/10.1016/bs.mcb.2022.05.004
  6. J Virol. 2022 Sep 07. e0121222
      The mitochondrial apoptosis pathway has the function to kill the cell, but recent work shows that this pathway can also be activated to a sublethal level, where signal transduction can be observed but the cell survives. Intriguingly, this signaling has been shown to contribute to inflammatory activity of epithelial cells upon infection with numerous agents. This suggests that microbial recognition can generate sublethal activity in the mitochondrial apoptosis pathway. Because this recognition is achieved by pattern recognition receptors (PRRs), it also implies that PRR signals are linked to the mitochondrial apoptosis apparatus. We here test this hypothesis during infection of epithelial cells with modified vaccinia virus Ankara (MVA). MVA recognition is achieved through receptors specific for nucleic acids, and we present evidence that the three receptors, Toll-like receptor 3 (TLR3), RIG-I/MDA5, and cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING), are involved in this signaling. When stimulated directly by specific ligands, all three receptors could trigger sublethal apoptosis signals. During infection with MVA, sublethal apoptosis signals were unmasked in X-linked IAP (XIAP)-deficient cells, where apoptosis induction was observed. Deletion of any of the three signaling adapters, TRIF, MAVS, and STING, reduced the DNA damage response, a sensitive measure of sublethal apoptosis signals. Our results suggest that PRRs signal via mitochondria, where they generate sublethal signals through the BCL-2-family, which may contribute to the response to infectious agents. IMPORTANCE A contribution of the mitochondrial apoptosis apparatus, in the absence of cell death, to the reaction of nonprofessional immune cells to viruses is suggested to play a role as a broad alert system of an infected cell: the apoptosis system can be activated by many upstream signals and could therefore act as a central coordinator of viral recognition. The proapoptotic activity of PRRs has been documented in multiple situations, but this activity seems too low to be meaningful, and a physiological significance of such activity is not immediately obvious. This work suggests the alternative interpretation that PRRs do not have the primary function to induce apoptosis but to trigger sublethal signals in the apoptosis system. A number of lines of recent research suggest that mitochondria contribute to cellular reactions, and this pathway may be a way of triggering an early host response.
    Keywords:  DNA damage; MVA; apoptosis; immune recognition; pattern recognition receptors
    DOI:  https://doi.org/10.1128/jvi.01212-22
  7. Biochim Biophys Acta Bioenerg. 2022 Sep 02. pii: S0005-2728(22)00384-X. [Epub ahead of print] 148914
      Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This "non-conventional" MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.
    Keywords:  Mitochondrial dynamics; Mitochondrial permeability transition; Non-conventional mitochondrial permeability transition; Permeability transition pore
    DOI:  https://doi.org/10.1016/j.bbabio.2022.148914
  8. Biochim Biophys Acta Bioenerg. 2022 Aug 31. pii: S0005-2728(22)00383-8. [Epub ahead of print] 148913
      Mitochondria assemble in a highly dynamic network where interconnected tubules evolve in length and size through regulated cycles of fission and fusion of mitochondrial membranes thereby adapting to cellular needs. Mitochondrial fusion and fission processes are mediated by specific sets of mechano-chemical large GTPases that belong to the Dynamin-Related Proteins (DRPs) super family. DRPs bind to cognate membranes and auto-oligomerize to drive lipid bilayers remodeling in a nucleotide dependent manner. Although structural characterization and mechanisms of DRPs that mediate membrane fission are well established, the capacity of DRPs to mediate membrane fusion is only emerging. In this review, we discuss the distinct structures and mechanisms of DRPs that trigger the anchoring and fusion of biological membranes with a specific focus on mitofusins that are dedicated to the fusion of mitochondrial outer membranes. In particular, we will highlight oligomeric assemblies of distinct DRPs and confront their mode of action against existing models of mitofusins assemblies with emphasis on recent biochemical, structural and computational reports. As we will see, the literature brings valuable insights into the presumed macro-assemblies mitofusins may form during anchoring and fusion of mitochondrial outer membranes.
    Keywords:  DRPs; Mitochondria; Mitochondrial dynamics; Mitofusins
    DOI:  https://doi.org/10.1016/j.bbabio.2022.148913
  9. Int J Mol Sci. 2022 Aug 26. pii: 9703. [Epub ahead of print]23(17):
      Mitochondrial epigenetic alterations are closely related to Alzheimer's disease (AD), which is described in this review. Reports of the alteration of mitochondrial DNA (mtDNA) methylation in AD demonstrate that the disruption of the dynamic balance of mtDNA methylation and demethylation leads to damage to the mitochondrial electron transport chain and the obstruction of mitochondrial biogenesis, which is the most studied mitochondrial epigenetic change. Mitochondrial noncoding RNA modifications and the post-translational modification of mitochondrial nucleoproteins have been observed in neurodegenerative diseases and related diseases that increase the risk of AD. Although there are still relatively few mitochondrial noncoding RNA modifications and mitochondrial nuclear protein post-translational modifications reported in AD, we have reason to believe that these mitochondrial epigenetic modifications also play an important role in the AD process. This review provides a new research direction for the AD mechanism, starting from mitochondrial epigenetics. Further, this review summarizes therapeutic approaches to targeted mitochondrial epigenetics, which is the first systematic summary of therapeutic approaches in the field, including folic acid supplementation, mitochondrial-targeting antioxidants, and targeted ubiquitin-specific proteases, providing a reference for therapeutic targets for AD.
    Keywords:  Alzheimer’s disease; methylation; mitochondrial DNA; mitochondrial epigenetics; noncoding RNA; post-translational modification
    DOI:  https://doi.org/10.3390/ijms23179703
  10. Int J Mol Sci. 2022 Sep 01. pii: 9946. [Epub ahead of print]23(17):
      Impaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis. Previously, we showed that VDAC1 interacts with SOD1 and that the VDAC1-N-terminal-derived peptide prevented mutant SOD1 cytotoxic effects. In this study, using a peptide array, we identified the SOD1 sequence that interacts with VDAC1. Synthetic peptides generated from the identified VDAC1-binding sequences in SOD1 directly interacted with purified VDAC1. We also show that VDAC1 oligomerization increased in spinal cord mitochondria isolated from mutant SOD1G93A mice and rats. Thus, we used the novel VDAC1-specific small molecules, VBIT-4 and VBIT-12, inhibiting VDAC1 oligomerization and subsequently apoptosis and associated processes such as ROS production, and increased cytosolic Ca2+. VBIT-12 was able to rescue cell death induced by mutant SOD1 in neuronal cultures. Finally, although survival was not affected, VBIT-12 administration significantly improved muscle endurance in mutant SOD1G93A mice. Therefore, VBIT-12 may represent an attractive therapy for maintaining muscle function during the progression of ALS.
    Keywords:  ALS; VDAC1; apoptosis; misfolded proteins; mitochondria; mutant SOD1
    DOI:  https://doi.org/10.3390/ijms23179946
  11. Front Immunol. 2022 ;13 904875
      Type I interferons (type I-IFN) are critical for the host defense to viral infection, and at the same time, the dysregulation of type I-IFN responses leads to autoinflammation or autoimmunity. Recently, we reported that the decrease in monounsaturated fatty acid caused by the genetic deletion of Scd2 is essential for the activation of type I-IFN signaling in CD4+ Th1 cells. Although interferon regulatory factor (IRF) is a family of homologous proteins that control the transcription of type I-IFN and interferon stimulated genes (ISGs), the member of the IRF family that is responsible for the type I-IFN responses induced by targeting of SCD2 remains unclear. Here, we report that the deletion of Scd2 triggered IRF3 activation for type I-IFN production, resulting in the nuclear translocation of IRF9 to induce ISG transcriptome in Th1 cells. These data led us to hypothesize that IRF9 plays an essential role in the transcriptional regulation of ISGs in Scd2-deleted (sgScd2) Th1 cells. By employing ChIP-seq analyses, we found a substantial percentage of the IRF9 target genes were shared by sgScd2 and IFNβ-treated Th1 cells. Importantly, our detailed analyses identify a unique feature of IRF9 binding in sgScd2 Th1 cells that were not observed in IFNβ-treated Th1 cells. In addition, our combined analyses of transcriptome and IRF9 ChIP-seq revealed that the autoimmunity related genes, which increase in patient with SLE, were selectively increased in sgScd2 Th1 cells. Thus, our findings provide novel mechanistic insights into the process of fatty acid metabolism that is essential for the type I-IFN response and the activation of the IRF family in CD4+ T cells.
    Keywords:  CD4+ T cells; ChIP-seq; IFR9; IRF3; RNA-seq; SCD2; fatty acid metabolism
    DOI:  https://doi.org/10.3389/fimmu.2022.904875
  12. Methods Cell Biol. 2022 ;pii: S0091-679X(22)00064-4. [Epub ahead of print]172 145-161
      It is now clear that radiation therapy (RT) can be delivered in doses and according to fractionation schedules that actively elicit immunostimulatory effects. While such effects are often sufficient to drive potent anticancer immunity culminating with systemic disease eradication, the immunostimulatory activity of RT stands out as a promising combinatorial partner for bona fide immunotherapeutics including immune checkpoint inhibitors (ICIs). Accumulating preclinical and clinical evidence indicates that the secretion of type I interferon (IFN) by irradiated cancer cells is a sine qua non for RT to initiate ICI-actionable tumor-targeting immune responses. Here, we detail a simple protocol to quantitatively assess type I IFN responses in irradiated mouse hormone receptor (HR)+ TS/A cells by RT-PCR. With minimal variations, the same technique can be straightforwardly adapted to quantify type I IFN-associated transcriptional responses in a variety of human and mouse cancer cells maintained in vitro.
    Keywords:  Breast cancer; CGAS; CXCL10; MX1; Mitochondrial DNA; PD-1; SARRP; STING1; TS/A; Tumor immunology; Viral mimicry
    DOI:  https://doi.org/10.1016/bs.mcb.2022.05.005
  13. Methods Cell Biol. 2022 ;pii: S0091-679X(22)00004-8. [Epub ahead of print]172 163-178
      Cancer cell-intrinsic type I interferon (IFN-I) activation is required to initiate early innate immune responses and the subsequent radiation-induced anti-tumor immunity. Investigating the secretion of IFN-I cytokines in response to radiation therapy (RT) is therefore a critical readout for selecting the best immunogenic radiation dose-fractionation regimen. In this chapter, we present different ELISA-based quantification techniques that can be utilized to assess the secretion of tumor-derived IFN-I cytokines, namely IFN-α and IFN-β.
    Keywords:  Beads; ELISA; Innate immunity; Interferon type I; Radiation therapy
    DOI:  https://doi.org/10.1016/bs.mcb.2022.01.004
  14. Int J Mol Sci. 2022 Aug 29. pii: 9818. [Epub ahead of print]23(17):
      Meiosis initiates with the formation of double strand breaks (DSBs) throughout the genome. To avoid genomic instability, these DSBs need to be correctly repaired by homologous recombination. Surveillance mechanisms involving the DNA damage response (DDR) pathway ATM-CHK2-p53 can detect the persistence of unrepaired DBSs and activate the recombination-dependent arrest at the pachytene stage. However, a complete understanding of p53 functions under normal physiological conditions remains lacking. Here, we report a detailed analysis of the p53 role during meiotic prophase in mice spermatocytes. We show that the absence of p53 regulates prophase progression by slowing down the pachytene stage when the recombination-dependent arrest occurs. Furthermore, our results show that p53 is necessary for proper crossover (CO) formation and localization. Our study contributes to a deeper understanding of p53 roles during the meiotic prophase.
    Keywords:  DSB repair; MLH1; crossover; meiosis; p53; synaptonemal complex; γH2AX
    DOI:  https://doi.org/10.3390/ijms23179818
  15. Cells. 2022 Sep 02. pii: 2744. [Epub ahead of print]11(17):
      Mitochondrial dynamics continually maintain cell survival and bioenergetics through mitochondrial quality control processes (fission, fusion, and mitophagy). Aberrant mitochondrial quality control has been implicated in the pathogenic mechanism of various human diseases, including cancer, cardiac dysfunction, and neurological disorders, such as Alzheimer's disease, Parkinson's disease, and prion disease. However, the mitochondrial dysfunction-mediated neuropathological mechanisms in prion disease are still uncertain. Here, we used both in vitro and in vivo scrapie-infected models to investigate the involvement of mitochondrial quality control in prion pathogenesis. We found that scrapie infection led to the induction of mitochondrial reactive oxygen species (mtROS) and the loss of mitochondrial membrane potential (ΔΨm), resulting in enhanced phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and its subsequent translocation to the mitochondria, which was followed by excessive mitophagy. We also confirmed decreased expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and reduced ATP production by scrapie infection. In addition, scrapie-infection-induced aberrant mitochondrial fission and mitophagy led to increased apoptotic signaling, as evidenced by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. These results suggest that scrapie infection induced mitochondrial dysfunction via impaired mitochondrial quality control processes followed by neuronal cell death, which may have an important role in the neuropathogenesis of prion diseases.
    Keywords:  dynamin-related protein 1; mitochondrial fission; mitochondrial quality control; mitophagy; neurodegeneration; prion disease
    DOI:  https://doi.org/10.3390/cells11172744
  16. Methods Mol Biol. 2023 ;2519 53-63
      Many apoptosis assays are available since there are many proteins regulated at multiple points and involved in apoptosis signaling cascade. To detect apoptosis accurately, two or more assays should be used since there are many overlapped features between apoptosis and necrosis. There are six major groups of available assays to detect apoptosis: membrane alteration, mitochondrial assays, cytomorphological alterations, DNA fragmentation, detection of caspase, cleaved substrate, inhibitors and regulators, and detection of apoptosis in whole mounts. Among those assay, early apoptosis could be detected through annexin V, which is based on the loss of the cellular membrane integrity. Also, there are many assays that can detect midphase of apoptosis using caspase activation and molecular processing including PARP degradation. Late phase of apoptosis could be detected with DNA fragmentation assays. Combinations of these assays allow us to identify the mechanisms of apoptosis induction after specific stimulus. This chapter will introduce three apoptosis detection assays including annexin assay, DNA/chromatin condensation assays, and TUNEL assay.
    Keywords:  Annexin V; Apoptosis; DNA condensation; TUNEL assay
    DOI:  https://doi.org/10.1007/978-1-0716-2433-3_6
  17. Methods Mol Biol. 2022 ;2543 191-210
      Cancer is an uncontrolled growth of normal cells due to unchecked regulatory mechanisms working inside the rapidly dividing cells. In this complex cancer disease treatment, various strategies are utilized to get rid of cancer cells effectively. The different methods combine approaches used to treat cancer, such as radiotherapy, surgery, and chemotherapy. Chemotherapy is among the most effective ways, along with radiotherapy and surgical removal of cancer tissue. Effective chemotherapy based on modification of conventional drugs along with various molecular therapeutic targets, which involve different inhibitors that work in a specific manner in inhibiting particular events activated in cancer cells-the understanding of molecular signaling pathways holds key in the development of targeted therapeutics. After the fundamental signaling pathway studies, a single signaling pathway targeting approach or multiple targeting could display remarkable results in cancer therapeutics. The signal approach includes the signal pathway target. However, a double targeted pathway could effectively aid in inhibiting cell growth or metastasis either due to triggering natural suicidal mechanism (apoptosis) activation. The particular environment of cells regulates cell growth and differentiation. Various proteins in the extracellular matrix (ECM) regulate the process of cancer initiation or progression. The ECM collagens, elastins proteins, fibronectins, and laminins might reduce the effectiveness of treatment therapy, reflecting them as an essential target. Any dysregulation in the composition of ECM reflects the regulatory ineffectiveness in a particular area. These have an association with poor prognosis, cell propagation, and metastasis, along drug resistance.Regulation in physiological processes associated with developmental process and maintaining the homeostasis. The pathogenesis of cancer might be connected to dysregulation in cell death programs, including autophagy, necrosis, and the most desirable cell death mechanism called apoptosis: programmed cell death, the highly regulatory mechanism of natural cell death involved in tissue development. The apoptosis involves characteristic feather of cell death which includes specific morphological change along with biochemical alteration. It includes tightly regulated irreversible events, i.e., phosphatidylserine externalization and DNA fragmentation, mainly via the intrinsic and extrinsic pathways. Targeting apoptosis in the development of therapeutics could be the ultimate process in treating cancer via chemotherapy. During apoptosis, cell death occurs without causing much damage or inflammation in neighboring cells. Various pro-apoptosis and anti-apoptosis proteins involved in the regulation of apoptosis could act as a remarkable target. The apoptosis inactivation is the critical dysregulatory process in the majority of cancer types. There is an increase in research development regarding apoptosis-targeted therapeutics. A understanding of apoptotic signaling pathways, a fundamental knowledge, aids in developing particular inhibitors for anti-apoptotic and activator of pro-apoptotic proteins.In both apoptosis pathways (extrinsic and intrinsic), pro-apoptotic and anti-apoptotic proteins act as potential regulators in cell division and growth. The pro-apoptotic proteins Bax trigger the activation of the intrinsic pathway, an excellent target for developing therapeutics, and are currently in clinical trials. Similarly, the inhibitor of the anti-apoptotic proteins is also on track in the drug development process. The considerable importance of apoptosis-based anticancer drugs is also due to improving the drug sensitivity via reversing the resistive mechanisms in cancer cells. The dysregulatory or inactivated apoptosis mechanism involve Bcl-2 family proteins which include both pro-apoptotic members downregulation and anti-apoptotic upregulation, various inhibitors of apoptosis as inhibitory proteins (IAPs), cell cycle dysregulation, dysregulatory repair system, cell progression pathway activation of NF-κB, tumor suppressor (p53) regulation, and death receptors (DRs) of the extrinsic pathway.
    Keywords:  Apoptotic dysregulation; Cancer; Extracellular matrix; Glycosaminoglycans
    DOI:  https://doi.org/10.1007/978-1-0716-2553-8_16
  18. Biomed Pharmacother. 2022 Sep;pii: S0753-3322(22)00873-3. [Epub ahead of print]153 113484
      Increasing mitochondrial fusion by intra-tumoral grafting of membrane-fused mitochondria created with Pep-1 conjugation (P-Mito) contributes to breast cancer treatment, but it needs to be validated. Using mitochondrial division inhibitor-1 (Mdivi-1, Mdi) to disturb mitochondrial dynamics, we showed that the antitumor action of P-Mito in a mouse model of triple-negative breast cancer depends upon mitochondrial fusion and that Mdi treatment alone is ineffective. P-Mito significantly enhanced Doxorubicin (Dox) sensitivity by inducing mitochondrial fusion and mitophagy, and the same efficiency was also achieved with Mdi by inhibiting mitophagy. Cell death was induced via the p53 pathway and AIF nuclear translocation in the case of P-Mito, versus the caspase-dependent pathway for Mdi. Notably, both mitochondrial treatments reduced oxidative stress and blood vessel density of xenograft tumors, especially P-Mito, which was accompanied by inhibition of nuclear factor kappa-B activation. Furthermore, through enrichment analysis, four microRNAs in serum microvesicles induced by P-Mito caused expression of predicted targets via the PI3K-Akt pathway, and significantly impacted regulation of nuclear processes and myeloid cell differentiation. Clustering of gene-sets implicated a major steroid catabolic network. This study showed diverse roles of mitochondria in breast cancer and revealed effective adjuvant therapy targeting mitochondrial fusion and mitophagy.
    Keywords:  Drug sensitivity; Mdivi-1; Mitochondrial dynamics; Mitochondrial transplantation; Triple-negative breast cancer
    DOI:  https://doi.org/10.1016/j.biopha.2022.113484
  19. Mol Neurobiol. 2022 Sep 07.
      Neuroinflammation in the cardiovascular center plays a critical role in the progression of hypertensive heart disease. And microglial autophagy is involved in the regulation of neuroinflammation. Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, senses mitochondrial DNA (mtDNA) and regulates autophagy. The detailed mechanisms of central cGAS affects neuroinflammatory response in hypertensive heart disease via regulating autophagy remain unknown. Angiotensin II (Ang II, 1.5 mg·kg-1·12 h-1, 2 weeks) was intraperitoneally injected to induce hypertension in mice. The cGAS-STING pathway was activated in the paraventricular nucleus (PVN) of Ang II-induced hypertensive mice. The contractile dysfunction of heart was alleviated in Ang II-induced hypertensive cGAS-/- mice. To observe the central effects of cGAS on regulating hypertensive heart disease, the RU.521 (a cGAS inhibitor) was intracisternally infused in hypertensive mice. Intracisternal infusion of the RU.521-alleviated myocardial interstitial fibrosis, cardiomyocyte hypertrophy, and the contractile dysfunction in Ang II-induced hypertensive mice. Intracisternal infusion of RU.521 attenuated the microglial activation, neuroinflammation, sympathetic/parasympathetic activity ratio, and lowered blood pressure. The autophagic flux in the PVN cells was blocked, while intracisternal infusion of RU.521 alleviated this effect in the Ang II-induced hypertensive mice. In vitro, it was found that cGAS-STING activation-induced autophagic flux blockage, while when the impaired autophagic flux was facilitated by rapamycin, an autophagy inducer, the microglial M1 polarization was decreased correspondingly. In conclusion, cGAS induces the inflammatory phenotype of microglia via impairing autophagic flux, thereby participating in neuroinflammation, which leads to sympathetic overactivation in hypertension and further caused hypertensive myocardial injury.
    Keywords:  Autophagy; Hypertension; Microglia; Neuroinflammation; cGAS-STING
    DOI:  https://doi.org/10.1007/s12035-022-02994-1
  20. JCI Insight. 2022 Sep 08. pii: e155250. [Epub ahead of print]7(17):
      STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell-dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ-induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
    Keywords:  Autoimmune diseases; Autoimmunity; Inflammation; Innate immunity; Monogenic diseases
    DOI:  https://doi.org/10.1172/jci.insight.155250
  21. Health Phys. 2022 Sep 07.
       ABSTRACT: With rapid technical advances, ionizing radiation has been put into wider application in ordinary living, with the worst cytological effect on the human body being cell death. Moreover, according to the Nomenclature Committee on Cell Death, the method of radiation-induced cell death, usually classified as interphase and proliferative death, undergoes more detailed classifications oriented by its molecular mechanism. Elaborating its mode and molecular mechanism is crucial for the protection and treatment of radiation injury, as well as the radiotherapy and recovery of tumors. Varying with the changes of the radiation dose and the environment, the diverse targets and pathways of ionizing radiation result in various cell deaths. This review focuses on classifications of radiation-induced cell death and its molecular mechanism. We also examine the main characteristics of ionizing radiation-induced cell death. The modes of radiation-induced cell death can be classified as apoptosis, necrosis, autophagy-dependent cell death, pyroptosis, ferroptosis, immunogenic cell death, and non-lethal processes. Once the dose is high enough, radiation effects mostly appear as destructiveness ("destructiveness" is used to describe a situation in which cells do not have the opportunity to undergo a routine death process, in which case high-dose radiation works like a physical attack). This breaks up or even shatters cells, making it difficult to find responses of the cell itself. Due to diversities concerning cell phenotypes, phases of cell cycle, radiation dose, and even cellular subregions, various methods of cell death occur, which are difficult to identify and classify. Additionally, the existence of common initial activation and signaling molecules among all kinds of cell deaths, as well as sophisticated crossways in cellular molecules, makes it more laborious to distinguish and classify various cell deaths.
    DOI:  https://doi.org/10.1097/HP.0000000000001601
  22. Mol Neurobiol. 2022 Sep 09.
      Excessive alcohol consumption can lead to alterations in brain structure and function, even causing irreversible learning and memory disorders. The hippocampus is one of the most sensitive areas to alcohol neurotoxicity in the brain. Accumulating evidence indicates that mitochondrial dysfunction contributes to alcohol neurotoxicity. However, little is known about the underlying molecular mechanisms. In this study, we found that chronic exposure to ethanol caused abnormal mitochondrial fission/fusion and morphology by activating the mitochondrial fission protein dynamin-related protein 1 (Drp1) and upregulating Drp1 receptors, such as fission protein 1 (Fis1), mitochondrial dynamics protein of 49 kDa (Mid49), and mitochondrial fission factor (Mff), combined with decreasing optic atrophy 1 (Opa1) and mitochondrial fusion protein mitofusin 1 (Mfn1) levels. In addition, mitochondrial division inhibitor 1 (mdivi-1) abrogated ethanol-induced mitochondrial dysfunction and improved hippocampal synapses and cognitive function in ethanol-exposed mice. Chronic ethanol exposure also resulted in cyclin-dependent kinase 5 (Cdk5) overactivation, as shown by the increase in the levels of Cdk5 and its activator P25 in the hippocampus. Furthermore, a Cdk5/P25 inhibitor (roscovitine) or Cdk5 knockdown using small interfering RNA (LVi-Cdk5) exerted neuroprotection by inhibiting abnormal mitochondrial fission through Drp1 phosphorylation at Ser616 and mitochondrial translocation after chronic ethanol exposure. Taken together, the present study demonstrated that inhibition of aberrant Cdk5 activation attenuates hippocampal neuron injury and cognitive deficits induced by chronic exposure to ethanol through Drp1-mediated mitochondrial fission and mitochondrial dysfunction. Interfering with this pathway might serve as a potential therapeutic approach to prevent ethanol-induced neurotoxicity in the brain.
    Keywords:  Alcohol consumption; Cdk5; Cognitive impairment; Drp1; Mitochondrial fission
    DOI:  https://doi.org/10.1007/s12035-022-03008-w
  23. Int J Mol Sci. 2022 Aug 31. pii: 9881. [Epub ahead of print]23(17):
      Protein quality control is essential for cellular homeostasis. In this study, we examined the effect of improperly folded proteins that do not form amyloid fibrils on mitochondria, which play important roles in ATP production and cell death. First, we prepared domain 3 of the dengue envelope protein in wild type and four mutants with widely different biophysical properties in misfolded/aggregated or destabilized states. The effects of the different proteins were detected using fluorescence microscopy and Western blotting, which revealed that three of the five proteins disrupted both inner and outer membrane integrity, while the other two proteins, including the wild type, did not. Next, we examined the common characteristics of the proteins that displayed toxicity against mitochondria by measuring oligomer size, molten globule-like properties, and thermal stability. The common feature of all three toxic proteins was thermal instability. Therefore, our data strongly suggest that thermally unstable proteins generated in the cytosol can cause cellular damage by coming into direct contact with mitochondria. More importantly, we revealed that this damage is not amyloid-specific.
    Keywords:  dengue envelope protein domain 3; membrane; misfolded protein; mitochondria; thermal instability
    DOI:  https://doi.org/10.3390/ijms23179881
  24. Methods Cell Biol. 2022 ;pii: S0091-679X(21)00130-8. [Epub ahead of print]172 1-16
      Radiation therapy (RT) is well known for its capacity to mediate cytostatic and cytotoxic effects upon the accumulation of unrepaired damage to macromolecules, notably DNA. The ability of ionizing radiation to prevent malignant cells from replicating and to cause their demise is indeed an integral component of the anticancer activity of RT. Neoplastic cells are generally more sensitive to the cytostatic and cytotoxic effects of RT than their healthy counterparts as they exhibit increased proliferative rate and limited capacity for DNA repair. This provides a rather comfortable therapeutic window for clinical RT usage, especially with the development of novel, technologically superior RT modalities that minimize the exposure of normal tissues. Thus, while accumulating evidence indicates that cancer control by RT also involves the activation of tumor-targeting immune responses, assessing cell cycle progression in irradiated cells remains a central approach for investigating radiosensitivity in preclinical tumor models. Here, we detail a simple, flow cytometry-assisted method to simultaneously assess cell cycle distribution and active DNA replication in cultured estrogen receptor (ER)+ breast cancer MCF7 cells. With minimal variations, the same technique can be straightforwardly implemented to a large panel of human and mouse cancer cell lines.
    Keywords:  BrdU; Cellular senescence; DNA damage; Immune checkpoint inhibitors; Propidium iodide; Regulated cell death
    DOI:  https://doi.org/10.1016/bs.mcb.2021.12.025
  25. Int J Mol Sci. 2022 Aug 25. pii: 9655. [Epub ahead of print]23(17):
      The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production.
    Keywords:  NDUFS4; cAMP/PKA; complex I; mitochondria; mitochondrial supercomplexes
    DOI:  https://doi.org/10.3390/ijms23179655
  26. Nat Cell Biol. 2022 Sep 05.
      Here we present an approach that combines a clustered regularly interspaced short palindromic repeats (CRISPR) system that simultaneously targets hundreds of epigenetically diverse endogenous genomic sites with high-throughput sequencing to measure Cas9 dynamics and cellular responses at scale. This massive multiplexing of CRISPR is enabled by means of multi-target guide RNAs (mgRNAs), degenerate guide RNAs that direct Cas9 to a pre-determined number of well-mapped sites. mgRNAs uncovered generalizable insights into Cas9 binding and cleavage, revealing rapid post-cleavage Cas9 departure and repair factor loading at protospacer adjacent motif-proximal genomic DNA. Moreover, by bypassing confounding effects from guide RNA sequence, mgRNAs unveiled that Cas9 binding is enhanced at chromatin-accessible regions, and cleavage by bound Cas9 is more efficient near transcribed regions. Combined with light-mediated activation and deactivation of Cas9 activity, mgRNAs further enabled high-throughput study of the cellular response to double-strand breaks with high temporal resolution, revealing the presence, extent (under 2 kb) and kinetics (~1 h) of reversible DNA damage-induced chromatin decompaction. Altogether, this work establishes mgRNAs as a generalizable platform for multiplexing CRISPR and advances our understanding of intracellular Cas9 activity and the DNA damage response at endogenous loci.
    DOI:  https://doi.org/10.1038/s41556-022-00975-z
  27. Int J Mol Sci. 2022 Aug 24. pii: 9572. [Epub ahead of print]23(17):
      Mitochonic Acid 5 (MA-5) enhances mitochondrial ATP production, restores fibroblasts from mitochondrial disease patients and extends the lifespan of the disease model "Mitomouse". Additionally, MA-5 interacts with mitofilin and modulates the mitochondrial inner membrane organizing system (MINOS) in mammalian cultured cells. Here, we used the nematode Caenorhabditis elegans to investigate whether MA-5 improves the Duchenne muscular dystrophy (DMD) model. Firstly, we confirmed the efficient penetration of MA-5 in the mitochondria of C. elegans. MA-5 also alleviated symptoms such as movement decline, muscular tone, mitochondrial fragmentation and Ca2+ accumulation of the DMD model. To assess the effect of MA-5 on mitochondria perturbation, we employed a low concentration of rotenone with or without MA-5. MA-5 significantly suppressed rotenone-induced mitochondria reactive oxygen species (ROS) increase, mitochondrial network fragmentation and nuclear destruction in body wall muscles as well as endogenous ATP levels decline. In addition, MA-5 suppressed rotenone-induced degeneration of dopaminergic cephalic (CEP) neurons seen in the Parkinson's disease (PD) model. Furthermore, the application of MA-5 reduced mitochondrial swelling due to the immt-1 null mutation. These results indicate that MA-5 has broad mitochondrial homing and MINOS stabilizing activity in metazoans and may be a therapeutic agent for these by ameliorating mitochondrial dysfunction in DMD and PD.
    Keywords:  MA-5; Parkinson’s disease; mitochondrial calcium; mitochondrial fragmentation; muscular dystrophy; rotenone
    DOI:  https://doi.org/10.3390/ijms23179572
  28. Cytokine Growth Factor Rev. 2022 Sep 01. pii: S1359-6101(22)00071-5. [Epub ahead of print]
      The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
    Keywords:  Inflammation; Innate immunity; Lipid metabolism; Metabolism; STING
    DOI:  https://doi.org/10.1016/j.cytogfr.2022.08.006