bims-mitper Biomed News
on Mitochondrial Permeabilization
Issue of 2022‒11‒06
eleven papers selected by
Bradley Irizarry
Thomas Jefferson University


  1. Nat Commun. 2022 Nov 04. 13(1): 6634
      Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein that is dispensable for mitochondrial division yet essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in a fatal, adult-onset dilated cardiomyopathy accompanied by extensive mitochondrial and cardiac remodeling during the transition to heart failure. Prior to the onset of disease, knockout cardiac mitochondria displayed specific IMM defects: futile proton leak dependent upon the adenine nucleotide translocase and an increased sensitivity to the opening of the mitochondrial permeability transition pore, with which MTFP1 physically and genetically interacts. Collectively, our data reveal new functions of MTFP1 in the control of bioenergetic efficiency and cell death sensitivity and define its importance in preventing pathogenic cardiac remodeling.
    DOI:  https://doi.org/10.1038/s41467-022-34316-3
  2. Biophys J. 2022 Nov 01. pii: S0006-3495(22)00895-5. [Epub ahead of print]
      Programmed mammalian cell death (apoptosis) is an essential mechanism in life which tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway opposing members of the Bcl-2 (B-cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding anti-apoptotic Bcl-2 protein itself being common in many, often incurable cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) which would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2's ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance (NMR) on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein, and could monitor their residue specific individual response upon the presence of a Bax-derived 36 aa long BH3 domain. The observed chemical shift perturbations (CSPs) allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2's functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue and domain specific insight into the molecular functioning of Bcl-2 at the membrane level; an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.
    Keywords:  Apoptosis; BH3-motif; Bcl-2 protein; NMR; membranes
    DOI:  https://doi.org/10.1016/j.bpj.2022.10.041
  3. J Am Assoc Nurse Pract. 2022 Aug 01. 34(8): 954-956
      ABSTRACT: Mitochondrial disorders arise from DNA mutations in either the mitochondrial DNA (mtDNA) or nuclear DNA genomes. This article focuses on a mtDNA base-pair mutation associated with neuropathy, ataxia, and retinitis pigmentosa and Leigh syndrome and the large-scale mtDNA deletion associated with Kearns-Sayre syndrome. Disease sequelae and management strategies are reviewed, along with implications for the nurse practitioner in primary or specialty care.
    DOI:  https://doi.org/10.1097/JXX.0000000000000755
  4. Elife. 2022 Oct 31. pii: e81943. [Epub ahead of print]11
      Stimulator of interferon genes (STING) is activated after detection of cytoplasmic dsDNA by cGAS (cyclic GMP-AMP synthase) as part of the innate immunity defence against viral pathogens. STING binds TANK-binding kinase 1 (TBK1). TBK1 mutations are associated with familial amyotrophic lateral sclerosis, and the STING pathway has been implicated in the pathogenesis of further neurodegenerative diseases. To test whether STING activation is sufficient to induce neurodegeneration, we analysed a mouse model that expresses the constitutively active STING variant N153S. In this model, we focused on dopaminergic neurons, which are particularly sensitive to stress and represent a circumscribed population that can be precisely quantified. In adult mice expressing N153S STING, the number of dopaminergic neurons was smaller than in controls, as was the density of dopaminergic axon terminals and the concentration of dopamine in the striatum. We also observed alpha-synuclein pathology and a lower density of synaptic puncta. Neuroinflammation was quantified by staining astroglia and microglia, by measuring mRNAs, proteins and nuclear translocation of transcription factors. These neuroinflammatory markers were already elevated in juvenile mice although at this age the number of dopaminergic neurons was still unaffected, thus preceding the degeneration of dopaminergic neurons. More neuroinflammatory markers were blunted in mice deficient for inflammasomes than in mice deficient for signalling by type I interferons. Neurodegeneration, however, was blunted in both mice. Collectively, these findings demonstrate that chronic activation of the STING pathway is sufficient to cause degeneration of dopaminergic neurons. Targeting the STING pathway could therefore be beneficial in Parkinson's disease and further neurodegenerative diseases.
    Keywords:  medicine; mouse; neuroscience
    DOI:  https://doi.org/10.7554/eLife.81943
  5. MicroPubl Biol. 2022 ;2022
      Opatic atrophy 1 (Opa1) is a mitochondrial GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. Osteoclasts are mitochondrial rich-cells. However, the role of Opa1 in osteoclasts remains unclear. Here, we demonstrate that Opa1- deficient osteoclast precursor cells do not undergo efficient osteoclast differentiation and exhibit abnormal cristae morphology. Thus, Opa1 is a key factor in osteoclast differentiation through regulation of mitochondrial dynamics.
    DOI:  https://doi.org/10.17912/micropub.biology.000650
  6. Cell Death Differ. 2022 Nov 03.
      The anti-apoptotic MCL1 is critical for delaying apoptosis during mitotic arrest. MCL1 is degraded progressively during mitotic arrest, removing its anti-apoptotic function. We found that knockout of components of ubiquitin ligases including APC/C, SCF complexes, and the mitochondrial ubiquitin ligase MARCH5 did not prevent mitotic degradation of MCL1. Nevertheless, MARCH5 determined the initial level of MCL1-NOXA network upon mitotic entry and hence the window of time during MCL1 was present during mitotic arrest. Paradoxically, although knockout of MARCH5 elevated mitotic MCL1, mitotic apoptosis was in fact enhanced in a BAK-dependent manner. Mitotic apoptosis was accelerated after MARCH5 was ablated in both the presence and absence of MCL1. Cell death was not altered after disrupting other MARCH5-regulated BCL2 family members including NOXA, BIM, and BID. Disruption of the mitochondrial fission factor DRP1, however, reduced mitotic apoptosis in MARCH5-disrupted cells. These data suggest that MARCH5 regulates mitotic apoptosis through MCL1-independent mechanisms including mitochondrial maintenance that can overcome the stabilization of MCL1.
    DOI:  https://doi.org/10.1038/s41418-022-01080-2
  7. Front Pain Res (Lausanne). 2022 ;3 1013577
      Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
    Keywords:  chronic pain; inflammation; mitochondria; neuro-inflammation; neuropathy; rheumatic disease; sensory neurons
    DOI:  https://doi.org/10.3389/fpain.2022.1013577
  8. Proc Natl Acad Sci U S A. 2022 Nov 08. 119(45): e2212417119
      Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA) ND5 m.13708G>A (A458T) variant arising on the mtDNA haplogroup H7A background, an extremely rare combination. Analysis of transmitochondrial cybrids with the 13708A-H7 mtDNA revealed a lower mitochondrial respiration, increased reactive oxygen species production (mROS), and dysregulation of connective tissue gene expression. The mitochondrial dysfunction was exacerbated by histamine, explaining why all eight surviving children inherited the dysfunctional histidine decarboxylase allele (W327X) from the father. Thus, certain combinations of common mtDNA variants can cause mitochondrial dysfunction, mitochondrial dysfunction can affect extracellular matrix gene expression, and histamine-activated mROS production can augment the severity of mitochondrial dysfunction. Most important, we have identified a previously unreported genetic cause of mitochondrial disorder arising from the incompatibility of common, nonpathogenic mtDNA variants.
    Keywords:  connective tissue disorder; histamine signaling; mitochondrial disorder; mtDNA haplogroups
    DOI:  https://doi.org/10.1073/pnas.2212417119
  9. Front Oncol. 2022 ;12 985363
      Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
    Keywords:  Bcl-2; apoptosis; autoimmunity; cancer; systematic
    DOI:  https://doi.org/10.3389/fonc.2022.985363
  10. HGG Adv. 2023 Jan 12. 4(1): 100147
      Inter-individual variation in the number of copies of the mitochondrial genome, called mitochondrial DNA copy number (mtDNA-CN), reflects mitochondrial function and has been associated with various aging-related diseases. We examined 415,422 exomes of self-reported White ancestry individuals from the UK Biobank and tested the impact of rare variants, at the level of single variants and through aggregate variant-set tests, on mtDNA-CN. A survey across nine variant sets tested enrichment of putatively causal variants and identified 14 genes at experiment-wide significance and three genes at marginal significance. These included associations at known mtDNA depletion syndrome genes (mtDNA helicase TWNK, p = 1.1 × 10-30; mitochondrial transcription factor TFAM, p = 4.3 × 10-15; mtDNA maintenance exonuclease MGME1, p = 2.0 × 10-6) and the V617F dominant gain-of-function mutation in the tyrosine kinase JAK2 (p = 2.7 × 10-17), associated with myeloproliferative disease. Novel genes included the ATP-dependent protease CLPX (p = 8.4 × 10-9), involved in mitochondrial proteome quality, and the mitochondrial adenylate kinase AK2 (p = 4.7 × 10-8), involved in hematopoiesis. The most significant association was a missense variant in SAMHD1 (p = 4.2 × 10-28), found on a rare, 1.2-Mb shared ancestral haplotype on chromosome 20. SAMHD1 encodes a cytoplasmic host restriction factor involved in viral defense response and the mitochondrial nucleotide salvage pathway, and is associated with Aicardi-Goutières syndrome 5, a childhood encephalopathy and chronic inflammatory response disorder. Rare variants were enriched in Mendelian mtDNA depletion syndrome loci, and these variants implicated core processes in mtDNA replication, nucleoid structure formation, and maintenance. These data indicate that strong-effect mutations from the nuclear genome contribute to the genetic architecture of mtDNA-CN.
    Keywords:  Mendelian mtDNA depletion syndrome; Mitochondria; exome sequencing; mtDNA copy number; rare haplotype sharing; rare variants
    DOI:  https://doi.org/10.1016/j.xhgg.2022.100147
  11. J Vis Exp. 2022 Oct 13.
      Apoptosis is a type of programmed cell death that eliminates damaged cells and controls the development and tissue homeostasis of multicellular organisms. Caspases, a family of cysteine proteases, play a key role in apoptosis initiation and execution. The maturation of caspases and their activity is fine-tuned by post-translational modifications in a highly dynamic fashion. To assess the effect of post-translational changes, potential sites are routinely mutated with residues persistent to any modifications. For example, the serine residue is replaced with alanine or aspartic acid. However, such substitutions could alter the caspase active site's conformation, leading to disturbances in catalytic activity and cellular functions. Moreover, mutations of other amino acid residues located in critical positions could also break the structure and functions of caspases and lead to apoptosis perturbation. To avoid the difficulties of employing mutated residues, molecular modeling approaches can be readily applied to estimate the potential effect of amino acid substitutions on caspase structure. The present protocol allows the modeling of both the wild-type caspase and its mutant forms with the biomolecular simulation package (Amber) and supercomputer facilities to test the effect of mutations on the protein structure and function.
    DOI:  https://doi.org/10.3791/64206