bims-mitpro Biomed News
on Mitochondrial Proteostasis
Issue of 2023‒08‒27
nine papers selected by
Andreas Kohler



  1. Biomolecules. 2023 Jul 31. pii: 1198. [Epub ahead of print]13(8):
      Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.
    Keywords:  mitochondria; mitophagy; organellar contact sites
    DOI:  https://doi.org/10.3390/biom13081198
  2. Front Cell Dev Biol. 2023 ;11 1196466
      Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.
    Keywords:  MCU; MPQC; MPTP; SLCs; VDAC; mitochondrial channels; mitochondrial transporters; posttranslational modifications
    DOI:  https://doi.org/10.3389/fcell.2023.1196466
  3. Nature. 2023 Aug 23.
      Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.
    DOI:  https://doi.org/10.1038/s41586-023-06441-6
  4. EMBO J. 2023 Aug 25. e113491
      Nix is a membrane-anchored outer mitochondrial protein that induces mitophagy. While Nix has an LC3-interacting (LIR) motif that binds to ATG8 proteins, it also contains a minimal essential region (MER) that induces mitophagy through an unknown mechanism. We used chemically induced dimerization (CID) to probe the mechanism of Nix-mediated mitophagy and found that both the LIR and MER are required for robust mitophagy. We find that the Nix MER interacts with the autophagy effector WIPI2 and recruits WIPI2 to mitochondria. The Nix LIR motif is also required for robust mitophagy and converts a homogeneous WIPI2 distribution on the surface of the mitochondria into puncta, even in the absence of ATG8s. Together, this work reveals unanticipated mechanisms in Nix-induced mitophagy and the elusive role of the MER, while also describing an interesting example of autophagy induction that acts downstream of the canonical initiation complexes.
    Keywords:  Autophagy; BNIP3; FIP200; LIR; p62
    DOI:  https://doi.org/10.15252/embj.2023113491
  5. Aging Cell. 2023 Aug 23. e13954
      The metabolic consequences of mitophagy alterations due to age-related stress in healthy aging brains versus neurodegeneration remain unknown. Here, we demonstrate that ceramide synthase 1 (CerS1) is transported to the outer mitochondrial membrane by the p17/PERMIT transporter that recognizes mislocalized mitochondrial ribosomes (mitoribosomes) via 39-FLRN-42 residues, inducing ceramide-mediated mitophagy. P17/PERMIT-CerS1-mediated mitophagy attenuated the argininosuccinate/fumarate/malate axis and induced d-glucose and fructose accumulation in neurons in culture and brain tissues (primarily in the cerebellum) of wild-type mice in vivo. These metabolic changes in response to sodium-selenite were nullified in the cerebellum of CerS1to/to (catalytically inactive for C18-ceramide production CerS1 mutant), PARKIN-/- or p17/PERMIT-/- mice that have dysfunctional mitophagy. Whereas sodium selenite induced mitophagy in the cerebellum and improved motor-neuron deficits in aged wild-type mice, exogenous fumarate or malate prevented mitophagy. Attenuating ceramide-mediated mitophagy enhanced damaged mitochondria accumulation and age-dependent sensorimotor abnormalities in p17/PERMIT-/- mice. Reinstituting mitophagy using a ceramide analog drug with selenium conjugate, LCL768, restored mitophagy and reduced malate/fumarate metabolism, improving sensorimotor deficits in old p17/PERMIT-/- mice. Thus, these data describe the metabolic consequences of alterations to p17/PERMIT/ceramide-mediated mitophagy associated with the loss of mitochondrial quality control in neurons and provide therapeutic options to overcome age-dependent sensorimotor deficits and related disorders like amyotrophic lateral sclerosis (ALS).
    Keywords:  CerS1; Drp1; aging; ceramide; mitochondrial metabolism; mitophagy; neurodegeneration; sensorimotor defects
    DOI:  https://doi.org/10.1111/acel.13954
  6. J Drug Target. 2023 Aug 23. 1-9
      Renal fibrosis, characterised by glomerulosclerosis and tubulointerstitial fibrosis, is a typical pathological alteration in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). However, the limited and expensive options for treating renal fibrosis place a heavy financial burden on patients and healthcare systems. Therefore, it is significant to find an effective treatment for renal fibrosis. Ferroptosis, a non-traditional form of cell death, has been found to play an important role in acute kidney injury (AKI), tumours, neurodegenerative diseases, and so on. Moreover, a growing body of research suggests that ferroptosis might be a potential target of renal fibrosis. Meanwhile, mitophagy is a type of selective autophagy that can selectively degrade damaged or dysfunctional mitochondria as a form of mitochondrial quality control, reducing the production of reactive oxygen species (ROS), the accumulation of which is the main cause of renal fibrosis. Additionally, as a receptor of mitophagy, NIX can release beclin1 to induce mitophagy, which can also bind to solute carrier family 7 member 11 (SLC7A11) to block the activity of cystine/glutamate antitransporter (system Xc-) and inhibit ferroptosis, thereby suggesting a link between mitophagy and ferroptosis. However, there have been only limited studies on the relationship among mitophagy, ferroptosis and renal fibrosis. In this paper, we review the mechanisms of mitophagy, and describe how ferroptosis and mitophagy are related to renal fibrosis in an effort to identify potential novel targets for the treatment of renal fibrosis.
    Keywords:  Mitophagy; ferroptosis; mechanism; relationship; renal fibrosis
    DOI:  https://doi.org/10.1080/1061186X.2023.2250574
  7. J Cell Mol Med. 2023 Aug 21.
      Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1(a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.
    Keywords:  OPA1; P53; apoptosis; cristae; dilated cardiomyopathy; fusion
    DOI:  https://doi.org/10.1111/jcmm.17918
  8. Curr Med Chem. 2023 Aug 22.
      Mitochondria are the energy factories of cells, and their functions are closely related to cell homeostasis. The mitochondrial unfolded protein response (mtUPR) is a newly discovered mechanism for regulating mitochondrial homeostasis. When unfolded/misfolded proteins accumulate in mitochondria, the mitochondria release signals that regulate the transcription of certain proteins in the nucleus, thereby inducing the correct folding or degradation of proteins in mitochondria. Many studies have also shown that an abnormality of mtUPR is closely related to the occurrence and development of diseases. Here, we summarized the pathways regulating mtUPR signaling and reviewed the research progress on mtUPR in diseases. Finally, we summarized the currently identified agonists and inhibitors of the mtUPR and discussed the potential of the mtUPR as a therapeutic target for diseases.
    Keywords:  ATFS-1; aging; kidney diseases; mitochondria; mtUPR
    DOI:  https://doi.org/10.2174/0929867331666230822095924
  9. bioRxiv. 2023 Aug 08. pii: 2023.07.20.549924. [Epub ahead of print]
      The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPR MT ), between tissues. However, these studies largely ignored non-neuronal cells of the nervous system. Here, we found that UPR MT activation in four, astrocyte-like glial cells in the nematode, C. elegans , can promote protein homeostasis by alleviating protein aggregation in neurons. Surprisingly, we find that glial cells utilize small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then impact neuron-mediated effects in organismal homeostasis and longevity.One-Sentence Summary: Glial cells sense mitochondrial stress and signal a beneficial stress signal to promote neuronal health and longevity.
    DOI:  https://doi.org/10.1101/2023.07.20.549924