bims-mitpro Biomed News
on Mitochondrial Proteostasis
Issue of 2023‒10‒01
nine papers selected by
Andreas Kohler



  1. Mol Cell. 2023 Sep 21. pii: S1097-2765(23)00696-2. [Epub ahead of print]
      Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.
    Keywords:  assembly factors; complex assembly; m-AAA protease; mitochondria; mitoribosome; prohibitin; protein biogenesis; protein quality control; respiratory chain; translation
    DOI:  https://doi.org/10.1016/j.molcel.2023.09.001
  2. Cells. 2023 Sep 05. pii: 2211. [Epub ahead of print]12(18):
      Autophagy is critical to acrosome biogenesis and mitochondrial quality control, but the underlying mechanisms remain unclear. The ubiquitin ligase Nrdp1/RNF41 promotes ubiquitination of the mitophagy-associated Parkin and interacts with the pro-autophagic protein SIP/CacyBP. Here, we report that global deletion of Nrdp1 leads to formation of the round-headed sperm and male infertility by disrupting autophagy. Quantitative proteome analyses demonstrated that the expression of many proteins associated with mitochondria, lysosomes, and acrosomes was dysregulated in either spermatids or sperm of the Nrdp1-deficient mice. Deletion of Nrdp1 increased the levels of Parkin but decreased the levels of SIP, the mitochondrial fission protein Drp1 and the mitochondrial protein Tim23 in sperm, accompanied by the inhibition of autophagy, the impairment of acrosome biogenesis and the disruption of mitochondrial arrangement in sperm. Thus, our results uncover an essential role of Nrdp1 in spermiogenesis and male fertility by promoting autophagy, providing important clues to cope with the related male reproductive diseases.
    Keywords:  Nrdp1; Parkin; SIP/CacyBP; acrosome; autophagy; mitochondrium; mitophagy; spermiogenesis; ubiquitin ligase
    DOI:  https://doi.org/10.3390/cells12182211
  3. J Biochem. 2023 Sep 29. pii: mvad075. [Epub ahead of print]
      Cyclic AMP (cAMP) - protein kinase A (PKA) signaling is a highly conserved pathway in eukaryotes and plays a central role in cell signaling cascades in response to environmental changes. Elevated cAMP levels promote the activation of PKA, which phosphorylates various downstream proteins. Many cytosolic and nuclear proteins, such as metabolic enzymes and transcriptional factors, have been identified as substrates for PKA, suggesting that PKA-mediated regulation occurs predominantly in the cytosol. Mitochondrial proteins are also phosphorylated by PKA, and PKA-mediated phosphorylation of mitochondrial proteins is considered to control a variety of mitochondrial functions, including oxidative phosphorylation, protein import, morphology, and quality control. In this review, we outline PKA mitochondrial substrates and summarize the regulation of mitochondrial functions through PKA-mediated phosphorylation.
    Keywords:  PKA; cAMP; mitochondria; phosphorylation
    DOI:  https://doi.org/10.1093/jb/mvad075
  4. Life Sci Alliance. 2023 Dec;pii: e202302122. [Epub ahead of print]6(12):
      Hundreds of mitochondrial proteins with N-terminal presequences are translocated across the outer and inner mitochondrial membranes via the TOM and TIM23 complexes, respectively. How translocation of proteins across two mitochondrial membranes is coordinated is largely unknown. Here, we show that the two domains of Tim50 in the intermembrane space, named core and PBD, both have essential roles in this process. Building upon the surprising observation that the two domains of Tim50 can complement each other in trans, we establish that the core domain contains the main presequence-binding site and serves as the main recruitment point to the TIM23 complex. On the other hand, the PBD plays, directly or indirectly, a critical role in cooperation of the TOM and TIM23 complexes and supports the receptor function of Tim50. Thus, the two domains of Tim50 both have essential but distinct roles and together coordinate translocation of proteins across two mitochondrial membranes.
    DOI:  https://doi.org/10.26508/lsa.202302122
  5. Int J Mol Sci. 2023 Sep 08. pii: 13835. [Epub ahead of print]24(18):
      Mitophagy is crucial for maintaining mitochondrial quality. However, its assessment in vivo is challenging. The endosomal-lysosomal system is a more accessible pathway through which subtypes of extracellular vesicles (EVs), which also contain mitochondrial constituents, are released for disposal. The inclusion of mitochondrial components into EVs occurs in the setting of mild mitochondrial damage and during impairment of lysosomal function. By releasing mitochondrial-derived vesicles (MDVs), cells limit the unload of mitochondrial damage-associated molecular patterns with proinflammatory activity. Both positive and negative effects of EVs on recipient cells have been described. Whether this is due to the production of EVs other than those containing mitochondria, such as MDVs, holding specific biological functions is currently unknown. Evidence on the existence of different MDV subtypes has been produced. However, their characterization is not always pursued, which would be relevant to exploring the dynamics of mitochondrial quality control in health and disease. Furthermore, MDV classification may be instrumental in understanding their biological roles and promoting their implementation as biomarkers in clinical studies.
    Keywords:  damage-associated molecular patterns (DAMPs); endosomal–lysosomal system; exosomes; extracellular vesicles; inflammation; mitochondrial DNA; mitochondrial quality control; mitophagy; mitovesicles; oxidative stress
    DOI:  https://doi.org/10.3390/ijms241813835
  6. Sci Rep. 2023 09 27. 13(1): 16173
      Lack of efficient insulin secretion from the pancreas can lead to impaired glucose tolerance (IGT), prediabetes, and diabetes. We have previously identified two IGT-associated single nucleotide polymorphisms (SNPs) rs62212118 and rs13052524 located at two overlapping genes: MRPS6 and SLC5A3. In this study, we show that MRPS6 but not SLC5A3 regulates glucose-stimulated insulin secretion (GSIS) in primary human β-cell and a mouse pancreatic insulinoma β-cell line. Data mining and biochemical studies reveal that MRPS6 is positively regulated by the mitochondrial unfolded protein response (UPRmt), but feedback inhibits UPRmt. Disruption of such feedback by MRPS6 knockdown causes UPRmt hyperactivation in high glucose conditions, hence elevated ROS levels, increased apoptosis, and impaired GSIS. Conversely, MRPS6 overexpression reduces UPRmt, mitigates high glucose-induced ROS levels and apoptosis, and enhances GSIS in an ATF5-dependent manner. Consistently, UPRmt up-regulation or down-regulation by modulating ATF5 expression is sufficient to decrease or increase GSIS. The negative role of UPRmt in GSIS is further supported by analysis of public transcriptomic data from murine islets. In all, our studies identify MRPS6 and UPRmt as novel modulators of GSIS and apoptosis in β-cells, contributing to our understanding of the molecular and cellular mechanisms of IGT, prediabetes, and diabetes.
    DOI:  https://doi.org/10.1038/s41598-023-43438-7
  7. Nat Rev Mol Cell Biol. 2023 Sep 29.
      Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
    DOI:  https://doi.org/10.1038/s41580-023-00650-7
  8. Cell Stress Chaperones. 2023 Sep 27.
      Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
    Keywords:  Cardiac microvascular injury; Diabetes; Endothelial cells; Mitochondrial dynamics; Mitophagy
    DOI:  https://doi.org/10.1007/s12192-023-01384-3