bims-mitpro Biomed News
on Mitochondrial Proteostasis
Issue of 2024–01–07
eleven papers selected by
Andreas Kohler, Umeå University



  1. Sci Rep. 2024 Jan 04. 14(1): 546
      Selective degradation of dysfunctional or excess mitochondria is a fundamental process crucial for cell homeostasis in almost all eukaryotes. This process relies on autophagy, an intracellular self-eating system conserved from yeast to humans and is thus called mitophagy. Detailed mechanisms of mitophagy remain to be fully understood. Here we show that mitochondrial degradation in budding yeast, which requires the pro-mitophagic protein Atg32, is strongly reduced in cells lacking Egd1, a beta subunit of the nascent polypeptide-associated complex acting in cytosolic ribosome attachment and protein targeting to mitochondria. By contrast, loss of the sole alpha subunit Egd2 or the beta subunit paralogue Btt1 led to only a partial or slight reduction in mitophagy. We also found that phosphorylation of Atg32, a crucial step for priming mitophagy, is decreased in the absence of Egd1. Forced Atg32 hyperphosphorylation almost completely restored mitophagy in egd1-null cells. Together, we propose that Egd1 acts in Atg32 phosphorylation to facilitate mitophagy.
    DOI:  https://doi.org/10.1038/s41598-023-50245-7
  2. Mol Cell. 2023 Dec 20. pii: S1097-2765(23)01027-4. [Epub ahead of print]
      Organelle transporters define metabolic compartmentalization, and how this metabolite transport process can be modulated is poorly explored. Here, we discovered that human SLC25A39, a mitochondrial transporter critical for mitochondrial glutathione uptake, is a short-lived protein under dual regulation at the protein level. Co-immunoprecipitation mass spectrometry and CRISPR knockout (KO) in mammalian cells identified that mitochondrial m-AAA protease AFG3L2 is responsible for degrading SLC25A39 through the matrix loop 1. SLC25A39 senses mitochondrial iron-sulfur cluster using four matrix cysteine residues and inhibits its degradation. SLC25A39 protein regulation is robust in developing and mature neurons. This dual transporter regulation, by protein quality control and metabolic sensing, allows modulating mitochondrial glutathione level in response to iron homeostasis, opening avenues for exploring regulation of metabolic compartmentalization. Neuronal SLC25A39 regulation connects mitochondrial protein quality control, glutathione, and iron homeostasis, which were previously unrelated biochemical features in neurodegeneration.
    Keywords:  AFG3L2; SLC25A39; glutathione; iron; mitochondrial transporter; protein quality control
    DOI:  https://doi.org/10.1016/j.molcel.2023.12.008
  3. Nat Commun. 2024 Jan 05. 15(1): 315
      The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
    DOI:  https://doi.org/10.1038/s41467-023-44538-8
  4. EMBO J. 2024 Jan;43(1): 32-60
      Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. This screen revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system and the ubiquitin-proteosome system regulated BNIP3 independently. Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. More broadly, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that tightly regulate endogenous tail-anchored protein localization.
    Keywords:  BNIP3; EMC; Mitophagy; Secretory Pathway; TA Protein
    DOI:  https://doi.org/10.1038/s44318-023-00006-z
  5. J Cell Biol. 2024 Mar 04. pii: e202211048. [Epub ahead of print]223(3):
      Lateral diffusion barriers compartmentalize membranes to generate polarity or asymmetrically partition membrane-associated macromolecules. Budding yeasts assemble such barriers in the endoplasmic reticulum (ER) and the outer nuclear envelope at the bud neck to retain aging factors in the mother cell and generate naïve and rejuvenated daughter cells. However, little is known about whether other organelles are similarly compartmentalized. Here, we show that the membranes of mitochondria are laterally compartmentalized at the bud neck and near the cell poles. The barriers in the inner mitochondrial membrane are constitutive, whereas those in the outer membrane form in response to stresses. The strength of mitochondrial diffusion barriers is regulated positively by spatial cues from the septin axis and negatively by retrograde (RTG) signaling. These data indicate that mitochondria are compartmentalized in a fission-independent manner. We propose that these diffusion barriers promote mitochondrial polarity and contribute to mitochondrial quality control.
    DOI:  https://doi.org/10.1083/jcb.202211048
  6. Cell Signal. 2024 Jan 03. pii: S0898-6568(24)00003-2. [Epub ahead of print] 111035
       BACKGROUND AND AIM: Mitochondrial quality control (MQC) plays a significant role in the progression of liver fibrosis, with key processes such as mitochondrial fission, fusion, mitophagy and biogenesis maintaining mitochondrial homeostasis. To understand the molecular mechanisms underlying epigenetic regulation of mitochondrial quality control in liver fibrosis, with the aim of uncovering novel therapeutic targets for treating, mitigating, and potentially reversing liver fibrosis, in light of the most recent advances in this field.
    METHODS: We searched PubMed, Web of Science, and Scopus for published manuscripts using terms "mitochondrial quality control" "mitochondrial fission" "mitochondrial fusion" "mitochondrial biogenesis" "mitophagy" "liver fibrosis" "epigenetic regulation" "DNA methylation" "RNA methylation" "histone modification" and "non-coding RNA". Manuscripts were collated, studied and carried forward for discussion where appropriate.
    RESULTS: Mitochondrial fission, fusion, biogenesis, and mitophagy regulate the homeostasis of mitochondria, and the imbalance of mitochondrial homeostasis can induce liver fibrosis. Epigenetic regulation, including DNA methylation, RNA methylation, histone modifications, and non-coding RNAs, plays a significant role in regulating the processes of mitochondrial homeostasis.
    CONCLUSION: Mitochondrial quality control and epigenetic mechanisms are intricately linked to the pathogenesis of liver fibrosis. Understanding these molecular interactions provides insight into potential therapeutic strategies. Further research is necessary to translate these findings into clinical applications, with a focus on developing epigenetic drugs to ameliorate liver fibrosis by modulating MQC and epigenetic pathways.
    Keywords:  Epigenetics; Liver fibrosis; Mitochondrial quality control; Molecular mechanisms
    DOI:  https://doi.org/10.1016/j.cellsig.2024.111035
  7. EMBO Rep. 2023 Dec 14.
      Fusion of the outer mitochondrial membrane (OMM) is regulated by mitofusin 1 (MFN1) and 2 (MFN2), yet the differential contribution of each of these proteins is less understood. Mitochondrial carrier homolog 2 (MTCH2) also plays a role in mitochondrial fusion, but its exact function remains unresolved. MTCH2 overexpression enforces MFN2-independent mitochondrial fusion, proposedly by modulating the phospholipid lysophosphatidic acid (LPA), which is synthesized by glycerol-phosphate acyl transferases (GPATs) in the endoplasmic reticulum (ER) and the OMM. Here we report that MTCH2 requires MFN1 to enforce mitochondrial fusion and that fragmentation caused by loss of MTCH2 can be specifically counterbalanced by overexpression of MFN2 but not MFN1, partially independent of its GTPase activity and mitochondrial localization. Pharmacological inhibition of GPATs (GPATi) or silencing ER-resident GPATs suppresses MFN2's ability to compensate for the loss of MTCH2. Loss of either MTCH2, MFN2, or GPATi does not impair stress-induced mitochondrial fusion, whereas the combined loss of MTCH2 and GPATi or the combined loss of MTCH2 and MFN2 does. Taken together, we unmask two cooperative mechanisms that sustain mitochondrial fusion.
    Keywords:  LPA; MFN2; MTCH2; Mitochondria-ER Communication; Mitochondrial Fusion
    DOI:  https://doi.org/10.1038/s44319-023-00009-1
  8. Cell Metab. 2024 Jan 02. pii: S1550-4131(23)00446-1. [Epub ahead of print]36(1): 21-35
      Mitochondria are central hubs of cellular metabolism and are tightly connected to signaling pathways. The dynamic plasticity of mitochondria to fuse, divide, and contact other organelles to flux metabolites is central to their function. To ensure bona fide functionality and signaling interconnectivity, diverse molecular mechanisms evolved. An ancient and long-overlooked mechanism is the generation of mitochondrial-derived vesicles (MDVs) that shuttle selected mitochondrial cargoes to target organelles. Just recently, we gained significant insight into the mechanisms and functions of MDV transport, ranging from their role in mitochondrial quality control to immune signaling, thus demonstrating unexpected and diverse physiological aspects of MDV transport. This review highlights the origin of MDVs, their biogenesis, and their cargo selection, with a specific focus on the contribution of MDV transport to signaling across cell and organ barriers. Additionally, the implications of MDVs in peroxisome biogenesis, neurodegeneration, metabolism, aging, and cancer are discussed.
    DOI:  https://doi.org/10.1016/j.cmet.2023.11.014
  9. Front Mol Biosci. 2023 ;10 1332658
      The ability to respond rapidly and efficiently to protein misfolding is crucial for development, reproduction and long-term health. Cells respond to imbalances in cytosolic/nuclear protein homeostasis through the Heat Shock Response, a tightly regulated transcriptional program that enhances protein homeostasis capacity by increasing levels of protein quality control factors. The Heat Shock Response is driven by Heat Shock Factor 1, which is rapidly activated by the appearance of misfolded proteins and drives the expression of genes encoding molecular chaperones and protein degradation factors, thereby restoring proteome integrity. HSF1 is critical for organismal health, and this has largely been attributed to the preservation of cytosolic and nuclear protein homeostasis. However, evidence is now emerging that HSF1 is also a key mediator of mitochondrial function, raising the possibility that many of the health benefits conferred by HSF1 may be due to the maintenance of mitochondrial homeostasis. In this review, I will discuss our current understanding of the interplay between HSF1 and mitochondria and consider how mitochondria-to-HSF1 signaling may influence health and disease susceptibility.
    Keywords:  HSF1; ageing; development; disease; mitochondria; protein homeostasis
    DOI:  https://doi.org/10.3389/fmolb.2023.1332658
  10. Cell Death Discov. 2024 Jan 05. 10(1): 4
      Local ischemia and hypoxia are the most important pathological processes in the early phase of secondary spinal cord injury (SCI), in which mitochondria are the main target of ischemic injury. Mitochondrial autophagy, also known as mitophagy, acts as a selective autophagy that specifically identifies and degrades damaged mitochondria, thereby reducing mitochondria-dependent apoptosis. Accumulating evidence shows that the mitophagy receptor, FUN14 domain-containing 1 (FUNDC1), plays an important role in ischemic injury, but the role of FUNDC1 in SCI has not been reported. In this study, we aimed to investigate whether FUNDC1 can enhance mitophagy and inhibit neuronal apoptosis in the early stage of SCI. In a rat SCI model, we found that FUNDC1 overexpression enhanced neuronal autophagy and decreased neuronal apoptosis in the early stage of injury, thereby reducing spinal cord damage. In vitro studies showed that the neuroprotective effects of FUNDC1 were achieved by inhibiting mitochondria-dependent apoptosis and improving mitochondrial function. In addition, FUNDC1 enhanced mitophagy. The protective effects of FUNDC1 against apoptosis and mitochondrial dysfunction were reversed by 3-methyladenine (3-MA), an autophagy inhibitor. Taken together, our results confirm that FUNDC1 can protect against neuronal loss after SCI by inducing mitophagy, inhibiting mitochondria-dependent apoptosis, and improving mitochondrial function.
    DOI:  https://doi.org/10.1038/s41420-023-01780-9
  11. Commun Biol. 2024 Jan 05. 7(1): 44
      Mitochondrial function plays an important role in the maintenance of male fertility. However, the mechanisms underlying mitochondrial defect-related infertility remain mostly unclear. Here we show that a deficiency of PARL (Parl-/-), a mitochondrial protease, causes complete arrest of spermatogenesis during meiosis I. PARL deficiency led to severe downregulation of proteins of respiratory chain complex IV in testes that did not occur in other tested organs, causing a deficit in complex IV activity and ATP production. Furthermore, Parl-/- testes showed an almost complete loss of HSD17B3, a protein of the sER responsible for the last step in testosterone synthesis. While testosterone production appeared to be restored by overexpression of HSD17B12, loss of the canonical testosterone synthesis led to an upregulation of luteinizing hormone (LH) and of LH-regulated responses. These results suggest an important impact of the downstream regulation of mitochondrial defects that manifest in a cell-type-specific manner and extend beyond mitochondria.
    DOI:  https://doi.org/10.1038/s42003-023-05703-3