bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2024–02–04
eight papers selected by
Andreas Kohler, Umeå University



  1. Hum Mol Genet. 2024 Jan 27. pii: ddae012. [Epub ahead of print]
      Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.
    Keywords:  AFG3L2; MTRFR; OMA1; OPA1; OXA1L; RNA processing; cell stress; co-translational quality control; fusion open reading frames; membrane morphology; mitochondria; non-stop mRNA; post-transcriptional; protein synthesis; proteostasis; ribosome quality control; ribosomes
    DOI:  https://doi.org/10.1093/hmg/ddae012
  2. Free Radic Biol Med. 2024 Jan 30. pii: S0891-5849(24)00058-3. [Epub ahead of print]
      Mitochondria are the powerhouses of cells, responsible for energy production and regulation of cellular homeostasis. When mitochondrial function is impaired, a stress response termed mitochondrial unfolded protein response (UPRmt) is initiated to restore mitochondrial function. Since mitochondria and UPRmt are implicated in many diseases, it is important to understand UPRmt regulation. In this study, we show that the SUMO protease ULP-2 has a key role in regulating mitochondrial function and UPRmt. Specifically, down-regulation of ulp-2 suppresses UPRmt and reduces mitochondrial membrane potential without significantly affecting cellular ROS. Mitochondrial networks are expanded in ulp-2 null mutants with larger mitochondrial area and increased branching. Moreover, the amount of mitochondrial DNA is increased in ulp-2 mutants. Downregulation of ULP-2 also leads to alterations in expression levels of mitochondrial genes involved in protein import and mtDNA replication, however, mitophagy remains unaltered. In summary, this study demonstrates that ULP-2 is required for mitochondrial homeostasis and the UPRmt.
    Keywords:  Mitochondrial unfolded protein response; SENP; SUMO; SUMO protease; Smo-1; ULP-2; UPRm
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2024.01.050
  3. Toxicol Res (Camb). 2024 Feb;13(1): tfae008
      Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPRmt) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression. More importantly, it is reported that abnormal aggregation of TDP-43 in mitochondria induced the activation of UPRmt. However, whether it is involved in APAP induced-hepatotoxicity remains unclear. In the present study, C57/BL6 mice were given 300 mg/kg APAP to establish a time-course model of acute liver injury. Furthermore, Calpeptin, the specific inhibiter of calpains, was used to conduct the intervention experiment. Our results showed, APAP exposure produced severe liver injury. Moreover, TDP-43 was obviously accumulated within mitochondria whereas mitochondrial protease LonP1 was significantly decreased. However, these changes exhibited significant recovery at 48 h. By contrast, the mitochondrial protease ClpP and chaperone mtHSP70 and HSP60 were consistently increased, which supported the UPRmt was activated to promote protein homeostasis. Further investigation revealed that calpain-mediated cleavage of TDP-43 could promote the accumulation of TDP-43 in mitochondria compartment, thereby facilitating the activation of UPRmt. Additionally, Calpeptin pretreatment not only protected against APAP-induced liver injury, but also suppressed the formation of TDP-43 aggregates and the activation of UPRmt. Taken together, our findings indicated that in APAP-induced acute liver injury, calpain-mediated cleavage of TDP43 caused its aberrant aggregation on the mitochondria. As a stress-protective response, the induction of UPRmt contributed to the recovery of mitochondrial function.
    Keywords:  TDP-43; drug induced liver injury; mitochondrial injury; mitochondrial unfolded protein response
    DOI:  https://doi.org/10.1093/toxres/tfae008
  4. Biochimie. 2024 Jan 25. pii: S0300-9084(24)00030-0. [Epub ahead of print]
      Mitochondrial dysfunction has been widely implicated in the pathogenesis of Alzheimer's disease (AD), with accumulation of damaged and dysfunctional mitochondria occurring early in the disease. Mitophagy, which governs mitochondrial turnover and quality control, is impaired in the AD brain, and strategies aimed at enhancing mitophagy have been identified as promising therapeutic targets. The translocator protein (TSPO) is an outer mitochondrial membrane protein that is upregulated in AD, and ligands targeting TSPO have been shown to exert neuroprotective effects in mouse models of AD. However, whether TSPO ligands modulate mitophagy in AD has not been explored. Here, we provide evidence that the TSPO-specific ligands Ro5-4864 and XBD173 attenuate mitophagy deficits and mitochondrial fragmentation in a cellular model of AD overexpressing the human amyloid precursor protein (APP). Ro5-4864 and XBD173 appear to enhance mitophagy via modulation of the autophagic cargo receptor P62/SQSTM1, in the absence of an effect on PARK2, PINK1, or LC3 level. Taken together, these findings indicate that TSPO ligands may be promising therapeutic agents for ameliorating mitophagy deficits in AD.
    Keywords:  Alzheimer's disease; Amyloid; Autophagy; Mitochondria; Mitophagy; TSPO; Translocator protein
    DOI:  https://doi.org/10.1016/j.biochi.2024.01.012
  5. J Microsc. 2024 Jan 31.
      The degradation and turnover of mitochondria is fundamental to Eukaryotes and is a key homeostatic mechanism for maintaining functional mitochondrial populations. Autophagy is an important pathway by which mitochondria are degraded, involving their sequestration into membrane-bound autophagosomes and targeting to lytic endosomal compartments (the lysosome in animals, the vacuole in plants and yeast). Selective targeting of mitochondria for autophagy, also known as mitophagy, distinguishes mitochondria from other cell components for degradation and is necessary for the regulation of mitochondria-specific cell processes. In mammals and yeast, mitophagy has been well characterised and is regulated by numerous pathways with diverse and important functions in the regulation of cell homeostasis, metabolism and responses to specific stresses. In contrast, we are only just beginning to understand the importance and functions of mitophagy in plants, chiefly as the proteins that target mitochondria for autophagy in plants are only recently emerging. Here, we discuss the current progress of our understanding of mitophagy in plants, the importance of mitophagy for plant life and the regulatory autophagy proteins involved in mitochondrial degradation. In particular, we will discuss the recent emergence of mitophagy receptor proteins that selectively target mitochondria for autophagy, and discuss the missing links in our knowledge of mitophagy-regulatory proteins in plants compared to animals and yeast.
    Keywords:  Arabidopsis; TRB1; TraB; autophagy; contact site; homeostasis; mitochondria; mitophagy; plant; stress
    DOI:  https://doi.org/10.1111/jmi.13267
  6. J Neurosci Res. 2024 Jan;102(1): e25292
      Autophagic dysfunction in neurodegenerative diseases is being extensively studied, yet the exact mechanism of macroautophagy/autophagy in axon degeneration is still elusive. A recent study by Kim et al. links autophagic stress to the sterile α and toll/interleukin 1 receptor motif containing protein 1 (SARM1)-dependent core axonal degeneration program, providing a new insight into the role of autophagy in axon degeneration. In the classical Wallerian axon degeneration model of axotomy, disruption of axonal transport destroys the coordinated activity of pro-survival and pro-degenerative factors in the axoplasm and activates the NADase activity of SARM1, thus triggering the axonal self-destruction program. However, the mechanism for SARM1 activation in the chronic neurodegenerative disorders is more complex. Mitochondrial defects and oxidative stress contribute to the activation of SARM1, while mitophagy can inhibit mitochondrial dysfunction and promote the clearance of SARM1 on mitochondria, thus protecting against neuronal degeneration. Therefore, in-depth elucidation of the underlying mechanisms of mitophagy during axonal degeneration can help develop promising strategies for the prevention and treatment of various neurodegenerative disorders.
    Keywords:  SARM1; autophagy; axon degeneration; mitochondrial dysfunction; mitophagy
    DOI:  https://doi.org/10.1002/jnr.25292
  7. Cell Regen. 2024 Jan 31. 13(1): 2
      The regenerative capacity of the adult mammalian heart remains a formidable challenge in biological research. Despite extensive investigations into the loss of regenerative potential during evolution and development, unlocking the mechanisms governing cardiomyocyte proliferation remains elusive. Two recent groundbreaking studies have provided fresh perspectives on mitochondrial-to-nuclear communication, shedding light on novel factors that regulate cardiomyocyte proliferation. The studies identified two mitochondrial processes, fatty acid oxidation and protein translation, as key players in restricting cardiomyocyte proliferation. Inhibition of these processes led to increased cell cycle activity in cardiomyocytes, mediated by reduction in H3k4me3 levels through accumulated α-ketoglutarate (αKG), and activation of the mitochondrial unfolded protein response (UPRmt), respectively. In this research highlight, we discuss the novel insights into mitochondrial-to-nuclear communication presented in these studies, the broad implications in cardiomyocyte biology and cardiovascular diseases, as well as the intriguing scientific questions inspired by the studies that may facilitate future investigations into the detailed molecular mechanisms of cardiomyocyte metabolism, proliferation, and mitochondrial-to-nuclear communications.
    Keywords:  ATF4; Cardiomyocyte; Cpt1b; FAO; H3k4me3; Mitochondria; Mrps5; Proliferation; UPRmt; αKG
    DOI:  https://doi.org/10.1186/s13619-024-00186-x
  8. Free Radic Biol Med. 2024 Jan 26. pii: S0891-5849(24)00043-1. [Epub ahead of print]213 394-408
       BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is a vital biological process that regulates mitochondrial protein homeostasis and enables glioblastoma cells to cope with mitochondrial oxidative stress in the tumor microenvironment. We previously reported that the binding of mitochondrial stress-70 protein (mtHSP70) to GrpE protein homolog 1 (GrpEL1) is involved in the regulation of the UPRmt. However, the mechanisms regulating their binding remain unclear. Herein, we examined the UPRmt in glioblastoma and explored whether modulating the interaction between mtHSP70 and GrpEL1 affects the UPRmt.
    METHODS: Western blot analysis, aggresome staining, and transmission electron microscopy were used to detect the activation of the UPRmt and protein aggregates within mitochondria. Molecular dynamics simulations were performed to investigate the impact of different mutations in mtHSP70 on its binding to GrpEL1. Endogenous site-specific mutations were introduced into mtHSP70 in glioblastoma cells using CRISPR/Cas9. In vitro and in vivo experiments were conducted to assess mitochondrial function and glioblastoma progression.
    RESULTS: The UPRmt was activated in glioblastoma cells in response to oxidative stress. mtHSP70 regulated mitochondrial protein homeostasis by facilitating UPRmt-progress protein import into the mitochondria. Acetylation of mtHSP70 at Lys595/653 enhanced its binding to GrpEL1. Missense mutations at Lys595/653 increased mitochondrial protein aggregates and inhibited glioblastoma progression in vitro and in vivo.
    CONCLUSIONS: We identified an innovative mechanism in glioblastoma progression by which acetylation of mtHSP70 at Lys595/653 influences its interaction with GrpEL1 to regulate the UPRmt. Mutations at Lys595/653 in mtHSP70 could potentially serve as therapeutic targets and prognostic indicators of glioblastoma.
    Keywords:  Acetylation; Glioblastoma; GrpEL1; UPRmt; mtHSP70
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2024.01.035