bims-mitpro Biomed News
on Mitochondrial Proteostasis
Issue of 2024‒07‒28
six papers selected by
Andreas Kohler, Umeå University



  1. Int J Mol Sci. 2024 Jul 15. pii: 7738. [Epub ahead of print]25(14):
      Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress.
    Keywords:  PKR; UPRMT; integrated stress response; mitochondrial dsRNAs; mitochondrial stress
    DOI:  https://doi.org/10.3390/ijms25147738
  2. Trends Cell Biol. 2024 Jul 20. pii: S0962-8924(24)00142-9. [Epub ahead of print]
      Mitochondria are pivotal organelles for cellular energy production and the regulation of stress responses. Recent research has elucidated complex mechanisms through which mitochondrial stress in one tissue can impact distant tissues, thereby promoting overall organismal health. Two recent studies by Shen et al. and Charmpilas et al. have demonstrated that an intact germline serves as a crucial signaling hub for the activation of the somatic mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans.
    Keywords:  UPR(mt); cell-nonautonomous; germline; mitochondria; stress response
    DOI:  https://doi.org/10.1016/j.tcb.2024.07.004
  3. Brain. 2024 Jul 25. pii: awae241. [Epub ahead of print]
      Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease (AD). Promoting mitophagy has been shown to improve cognitive function in AD animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in AD patients and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned AD-related changes. Our findings uncover a novel mechanism of BOK signaling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in AD, thus representing a promising therapeutic target.
    Keywords:  amyloid-β; cognitive decline; mitochondrial dysfunction; mitophagy; synaptophysin loss
    DOI:  https://doi.org/10.1093/brain/awae241
  4. Front Cell Dev Biol. 2024 ;12 1431968
      Mitophagy is the cellular process to selectively eliminate dysfunctional mitochondria, governing the number and quality of mitochondria. Dysregulation of mitophagy may lead to the accumulation of damaged mitochondria, which plays an important role in the initiation and development of tumors. Mitophagy includes ubiquitin-dependent pathways mediated by PINK1/Parkin and non-ubiquitin dependent pathways mediated by mitochondrial autophagic receptors including NIX, BNIP3, and FUNDC1. Cellular mitophagy widely participates in multiple cellular process including metabolic reprogramming, anti-tumor immunity, ferroptosis, as well as the interaction between tumor cells and tumor-microenvironment. And cellular mitophagy also regulates tumor proliferation and metastasis, stemness, chemoresistance, resistance to targeted therapy and radiotherapy. In this review, we summarized the underlying molecular mechanisms of mitophagy and discussed the complex role of mitophagy in diverse contexts of tumors, indicating it as a promising target in the mitophagy-related anti-tumor therapy.
    Keywords:  PINK1; cancer; mitochondria; mitophagy; stemness
    DOI:  https://doi.org/10.3389/fcell.2024.1431968
  5. Neurochem Int. 2024 Jul 22. pii: S0197-0186(24)00135-9. [Epub ahead of print]179 105808
      Depression is a complex mood disorder with multifactorial etiology and is also the most frequent non-motor symptom of Parkinson's disease. Emerging research suggests a potential link between mitochondrial dysfunction and the pathophysiology of major depressive disorder. By synthesizing current knowledge and research findings, this review sheds light on the intricate relationship between Parkin, a protein classically associated with Parkinson's disease, and mitochondrial quality control mechanisms (e.g., mitophagy, mitochondrial biogenesis, and mitochondrial dynamic), specifically focusing on their relevance in the context of depression. Additionally, the present review discusses therapeutic strategies targeting Parkin-medicated mitophagy and calls for further research in this field. These findings suggest promise for the development of novel depression treatments through modulating Parkin-mediated mitophagy.
    Keywords:  Major depressive disorder; Mitochondrial biogenesis; Mitochondrial dynamics; Mitochondrial quality control; Mitophagy; Parkin
    DOI:  https://doi.org/10.1016/j.neuint.2024.105808
  6. Hum Reprod. 2024 Jul 27. pii: deae171. [Epub ahead of print]
      Mitochondria are commonly recognized as the powerhouses of the cell, primarily responsible for energy production through oxidative phosphorylation. Alongside this vital function, they also play crucial roles in regulating calcium signaling, maintaining membrane potential, and modulating apoptosis. Their involvement in various cellular pathways becomes particularly evident during oogenesis and embryogenesis, where mitochondrial quantity, morphology, and distribution are tightly controlled. The efficiency of the mitochondrial network is maintained through multiple quality control mechanisms that are essential for reproductive success. These include mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy. Not surprisingly, mitochondrial dysfunction has been implicated in infertility and ovarian aging, prompting investigation into mitochondria as diagnostic and therapeutic targets in assisted reproduction. To date, mitochondrial DNA copy number in oocytes, cumulus cells, and trophectoderm biopsies, and fluorescent lifetime imaging microscopy-based assessment of NADH and flavin adenine dinucleotide content have been explored as potential predictors of embryo competence, yielding limited success. Despite challenges in the clinical application of mitochondrial diagnostic strategies, these enigmatic organelles have a significant impact on reproduction, and their potential role as diagnostic targets in assisted reproduction is likely to remain an active area of investigation in the foreseeable future.
    Keywords:  FLIM; assisted reproduction outcomes; embryo; embryo viability; in vitro fertilization; mitochondrial dynamics; mtDNA
    DOI:  https://doi.org/10.1093/humrep/deae171