bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2024–12–15
two papers selected by
Andreas Kohler, Umeå University



  1. iScience. 2024 Dec 20. 27(12): 111384
      Degradation of damaged mitochondria, a process called mitophagy, plays a role in mitochondrial quality control and its dysfunction has been linked to neurodegenerative pathologies. The PINK1 kinase and the ubiquitin ligase Parkin-mediated mitophagy represents the most common pathway in which specific receptors, including Optineurin (Optn), target ubiquitin-labeled mitochondria to autophagosomes. Here, we show that Protein Kinases D (PKD) are activated and recruited to damaged mitochondria. Subsequently, PKD phosphorylate Optn to promote a complex with Parkin leading to enhancement of its ubiquitin ligase activity. Paradoxically, inhibiting PKD activity enhances the interaction between Optn and LC3, promotes the recruitment of Parkin to mitochondria, and increases the mitophagic function of Optn. This enhancement of mitophagy is characterized by increased production of mitochondrial ROS and a reduction in mitochondrial mass. The PKD kinases may therefore regulate Optn-dependent mitophagy by amplifying the Parkin-mediated degradation signals to improve the cell response against oxidative stress damage.
    Keywords:  Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2024.111384
  2. Int J Biol Sci. 2024 ;20(15): 6222-6240
      PGAM5 and VDAC1 have both been reported to regulate mitophagy. However, the mechanisms by which they regulate sepsis-induced inflammatory microvascular injury remain unverified. In previous studies, we established the role of this regulatory axis in various phenotypic processes, including mitophagy, mitochondrial biogenesis, the mitochondrial unfolded protein response, and mitochondrial dynamics, while further confirming the interactive regulatory proteins within this axis. However, the validation and elucidation of these regulatory phenotypes have primarily focused on ischemic heart diseases such as ischemic myocardial injury and heart failure. Sepsis-related myocardial injury is currently recognized as a significant cardiac impairment, and although there are cardioprotective and nutritional agents available for supportive therapy, fundamental research validating the upstream targets and mechanisms of microvascular injury is still lacking. Based on our previous research, we further explored the role of mitophagy dysfunction mediated by VDAC1 and its upstream regulatory protein PGAM5 in sepsis-induced coronary microvascular injury. We also confirmed the material basis and metabolic pathway regulation targeting the PGAM5- VDAC1 interactive mechanism with relevant drugs. Our findings suggest that PGAM5-mediated mitophagy dysfunction may be a crucial factor leading to sepsis-induced microvascular injury, primarily interacting with VDAC1-mediated mitochondrial membrane dysfunction. Animal experiments revealed that cardiac-specific knockout of PGAM5 could reverse LPS-induced coronary microvascular injury and inflammatory damage, restoring cardiac ejection function and mitophagy functionality. In vitro studies also confirmed that the PGAM5-VDAC1 interaction can normalize mitophagy, restoring the normal morphology and structure of mitochondria while maintaining normal mitochondrial energy metabolism levels and respiratory chain function. Further pharmacological research indicated that the active ingredients of traditional Chinese medicine-Puerarin (TCM, a GAS6 Receptor Agonist) can target the PGAM5- VDAC1 axis to regulate mitophagy and inhibit LPS-induced necrotic apoptosis in cardiomyocytes, potentially reversing mitochondrial pathway-related cardiac injury. TCM may emerge as a prospective therapeutic agent targeting the PGAM5- VDAC1 axis.
    Keywords:  PGAM5; VDAC1; mitochondria; mitophagy; septic cardiomyopathy
    DOI:  https://doi.org/10.7150/ijbs.104427