bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–02–09
four papers selected by
Andreas Kohler, Umeå University



  1. bioRxiv. 2025 Jan 23. pii: 2025.01.20.633997. [Epub ahead of print]
      Lipid saturation is a key determinant of membrane function and organelle health, with changes in saturation triggering adaptive quality control mechanisms to maintain membrane integrity. Among cellular membranes, the mitochondrial outer membrane (OMM) is an important interface for many cellular functions, but how lipid saturation impacts OMM function remains unclear. Here, we show that increased intracellular unsaturated fatty acids (UFAs) remodel the OMM by promoting the formation of multilamellar mitochondrial-derived compartments (MDCs), which sequester proteins and lipids from the OMM. These effects depend on the incorporation of UFAs into membrane phospholipids, suggesting that changes in membrane bilayer composition mediate this process. Furthermore, elevated UFAs impair the assembly of the OMM protein translocase (TOM) complex, with unassembled TOM components captured into MDCs. Collectively, these findings suggest that alterations in phospholipid saturation may destabilize OMM protein complexes and trigger an adaptive response to sequester excess membrane proteins through MDC formation.
    Significance Statement: Mitochondrial-derived compartments are multilamellar structures that sequester protein and lipids of the outer mitochondrial membrane in response to metabolic and membrane perturbations, but it is largely unknown how membrane fluidity influences this pathway.Increased levels of unsaturated phospholipids may disrupt the TOM complex, a large multi-subunit complex on the outer mitochondrial membrane, to promote the formation of mitochondrial-derived compartments, while increased levels of saturated phospholipids inhibits formation of mitochondrial-derived compartments.These findings reveal a link between phospholipid composition and protein stress in driving mitochondrial-derived compartment biogenesis, and thus mitochondrial quality control.
    DOI:  https://doi.org/10.1101/2025.01.20.633997
  2. bioRxiv. 2025 Jan 23. pii: 2025.01.22.634344. [Epub ahead of print]
      The mitochondrial unfolded protein response (UPR mt ) is regulated by the bZIP protein ATFS-1 which promotes mitochondrial protein homeostasis (proteostasis) and mitochondrial biogenesis in Caenorhabditis elegans . Upon mitochondrial perturbation, the ATFS-1-dependent transcriptional program promotes gene expression, leading to mitochondrial recovery. Conversely, atfs-1 -deletion worms harbor dysfunctional mitochondria, are developmentally impaired, and short-lived. However, atfs-1 -deletion worms develop to adults suggesting the presence of other signaling pathways that promote mitochondrial function and biogenesis in the absence of atfs-1 . We hypothesized that additional transcription factors regulate, or promote, mitochondrial function in the absence of atfs-1 . Here, we screened for transcription factors that could reduce the decline in mitochondrial function in the atfs-1 mutants when inhibited. Here, we demonstrate that inhibition of the nuclear hormone receptor NHR-180 re-establishes a functional mitochondrial network in atfs-1(null) worms, increases mtDNA content, and improves the developmental rate of wildtype worms. NHR-180 increases transcription of genes required for cytosolic protein synthesis in response to mitochondrial perturbation. Inhibition of the S6 kinase homolog, rsks-1 , in atfs-1(null) worms leads to a recovery of the mitochondrial network and mtDNA content consistent with nhr-180 regulating expression of protein synthesis components. Consistent with the observations in C. elegans , S6 kinase inhibition also increased mitochondrial biogenesis in mammalian atf5 -knockout cells that harbor severely impaired mitochondria. Intriguingly, nhr-180 or S6 kinase inhibition also rescues mitochondrial dysfunction caused by mutations in multiple genes required for oxidative phosphorylation. Combined, these studies suggest that increased protein synthesis contributes to the mitochondrial dysfunction caused by perturbations in OXPHOS gene expression and suggest a relatively straightforward approach to reducing the impact of mitochondrial dysfunction.
    DOI:  https://doi.org/10.1101/2025.01.22.634344
  3. J Biol Chem. 2025 Feb 03. pii: S0021-9258(25)00100-0. [Epub ahead of print] 108253
      Parkinson's disease (PD) is a devastating neurodegenerative disease resulting from the death of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Familial and sporadic forms of the disease have been linked to mitochondrial dysfunction. Pathology has been identified with mutations in the PARK6 gene encoding PTEN-induced kinase 1 (PINK1), a quality control protein in the mitochondria. Disease-associated mutations at the transmembrane region of PINK1 protein were predicted to disrupt the cleavage of the transmembrane region by the PARL protease at the inner mitochondrial membrane. Here, using microscopy, kinetic analysis and molecular dynamic simulations, we analyzed 3 PD associated TM mutations; PINK1-C92F, PINK1-R98W and PINK1-I111S, and found that mitochondrial localization and cleavage by the PARL protease were not significantly impaired. However, clearance of hydrolyzed PINK1-R98W appears to be compromised due to altered positioning of the protein in the outer mitochondrial membrane, preventing association with TOM complexes and slowing cleavage by PARL. This single amino acid change slows degradation of proteolyzed PINK1, increasing its accumulation at the outer mitochondrial membrane and resulting in increased mitophagy and decreased mitochondrial content among these cells.
    Keywords:  MD Simulation; PARL; Parkinson’s Disease; Proteostasis; Rhomboid Protease
    DOI:  https://doi.org/10.1016/j.jbc.2025.108253