bims-mitpro Biomed News
on Mitochondrial proteostasis
Issue of 2025–09–14
three papers selected by
Andreas Kohler, Umeå University



  1. EMBO J. 2025 Sep 08.
      A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPRmt) and the integrated stress response (ISR). These responses are essential for managing mitochondrial proteostasis and restoring cellular function, with each being tailored to specific stressors and cellular milieus. While excessive stress can lead to maladaptive responses, mitohormesis refers to the beneficial effects of low-level mitochondrial stress. Initially studied in invertebrates and cell cultures, recent research has expanded to mammalian models of mitohormesis. In this literature review, we describe the current landscape of mammalian mitohormesis research and identify mechanistic patterns that result in local, systemic, or interorgan mitohormesis. These investigations reveal the potential for targeting mitohormesis for therapeutic benefit and can transform the treatment of diseases commonly associated with mitochondrial stress in humans.
    Keywords:  Integrated Stress Response; Mammalian Models; Mitochondrial Retrograde Signaling; Mitochondrial Unfolded Protein Response (UPRmt); Mitohormesis
    DOI:  https://doi.org/10.1038/s44318-025-00549-3
  2. Nat Aging. 2025 Sep 10.
      Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria. In Caenorhabditis elegans, the RNA-binding protein LARP-1 (La-related protein 1) orchestrates coalescence of translation machinery and multiple RNA-binding proteins via liquid-liquid phase separation into MATOs that associate with mitochondria in a translocase of the outer membrane complex-dependent manner. LARP-1 deficiency markedly reduces mitochondrial protein levels, impairing cristae organization and ATP production. Specifically, we show that the membrane-shaping MICOS subunit IMMT-1(MIC60) and the ATP synthase β subunit ATP-2, both being important for cristae organization, are synthesized in LARP-1 MATOs. During aging and starvation, LARP-1 MATOs dissociate from mitochondria; however, mitochondrion-persistent LARP-1 MATOs protect mitochondrial health and greatly extend lifespan. These findings suggest an important mitochondrion-regulating mechanism in aging and stress.
    DOI:  https://doi.org/10.1038/s43587-025-00942-x
  3. Nat Metab. 2025 Sep 09.
      The essential cofactor coenzyme A (CoASH) and its thioester derivatives (acyl-CoAs) have pivotal roles in cellular metabolism. However, the mechanism by which different acyl-CoAs are accurately partitioned into different subcellular compartments to support site-specific reactions, and the physiological impact of such compartmentalization, remain poorly understood. Here, we report an optimized liquid chromatography-mass spectrometry-based pan-chain acyl-CoA extraction and profiling method that enables a robust detection of 33 cellular and 23 mitochondrial acyl-CoAs from cultured human cells. We reveal that SLC25A16 and SLC25A42 are critical for mitochondrial import of free CoASH. This CoASH import process supports an enriched mitochondrial CoA pool and CoA-dependent pathways in the matrix, including the high-flux TCA cycle and fatty acid oxidation. Despite a small fraction of the mitochondria-localized CoA synthase COASY, de novo CoA biosynthesis is primarily cytosolic and supports cytosolic lipid anabolism. This mitochondrial acyl-CoA compartmentalization enables a spatial regulation of anabolic and energy-related catabolic processes, which promises to shed light on pathophysiology in the inborn errors of CoA metabolism.
    DOI:  https://doi.org/10.1038/s42255-025-01358-y