Cell Rep. 2021 Aug 31. pii: S2211-1247(21)01085-8. [Epub ahead of print]36(9): 109642
Post-translational modification of ribosomal proteins enables rapid and dynamic regulation of protein biogenesis. Site-specific ubiquitylation of 40S ribosomal proteins uS10 and eS10 plays a key role during ribosome-associated quality control (RQC). Distinct, and previously functionally ambiguous, ubiquitylation events on the 40S proteins uS3 and uS5 are induced by diverse proteostasis stressors that impact translation activity. Here, we identify the ubiquitin ligase RNF10 and the deubiquitylating enzyme USP10 as the key enzymes that regulate uS3 and uS5 ubiquitylation. Prolonged uS3 and uS5 ubiquitylation results in 40S, but not 60S, ribosomal protein degradation in a manner independent of canonical autophagy. We show that blocking progression of either scanning or elongating ribosomes past the start codon triggers site-specific ubiquitylation events on ribosomal proteins uS5 and uS3. This study identifies and characterizes a distinct arm in the RQC pathway, initiation RQC (iRQC), that acts on 40S ribosomes during translation initiation to modulate translation activity and capacity.
Keywords: RNF10; protein homeostasis; ribosome-associated quality control; translation initiation; ubiquitin