bims-mitran Biomed News
on Mitochondrial translation
Issue of 2021–10–03
seven papers selected by
Andreas Kohler, Stockholm University



  1. Biochemistry (Mosc). 2021 Sep;86(9): 1107-1121
      When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
    Keywords:  rescue; ribosome; termination; translation
    DOI:  https://doi.org/10.1134/S0006297921090066
  2. Biochemistry (Mosc). 2021 Sep;86(9): 1095-1106
      Ribosome profiling (riboseq) has opened the possibilities for the genome-wide studies of translation in all living organisms. This method is based on deep sequencing of mRNA fragments protected by the ribosomes from hydrolysis by ribonucleases, the so-called ribosomal footprints (RFPs). Ribosomal profiling together with RNA sequencing allows not only to identify with a reasonable accuracy translated reading frames in the transcriptome, but also to track changes in gene expression in response to various stimuli. Notably, ribosomal profiling in its classical version has certain limitations. The size of the selected mRNA fragments is 25-35 nts, while RFPs of other sizes are usually omitted from analysis. Also, ribosomal profiling "averages" the data from all ribosomes and does not allow to study specific ribosomal complexes associated with particular translation factors. However, recently developed modifications of ribosomal profiling provide answers to a number of questions. Thus, it has become possible to analyze not only elongating, but also scanning and reinitiating ribosomes, to study events associated with the collision of ribosomes during mRNA translation, to discover new ways of cotranslational assembly of multisubunit protein complexes during translation, and to selectively isolate ribosomal complexes associated with certain protein factors. New data obtained using these modified approaches provide a better understanding of the mechanisms of translation regulation and the functional roles of translational apparatus components.
    Keywords:  mRNA; next generation sequencing; protein synthesis; ribosomal profiling; ribosome; scanning; translation
    DOI:  https://doi.org/10.1134/S0006297921090054
  3. Nucleic Acids Res. 2021 Sep 30. pii: gkab854. [Epub ahead of print]
      eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions - binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.
    DOI:  https://doi.org/10.1093/nar/gkab854
  4. RNA Biol. 2021 Sep 29. 1-15
      The well-established Shine-Dalgarno model suggests that translation initiation in bacteria is regulated via base-pairing between ribosomal RNA (rRNA) and mRNA. We used novel computational analyses and modelling of 823 bacterial genomes coupled with experiments to demonstrate that rRNA-mRNA interactions are diverse and regulate all translation steps from pre-initiation to termination. Previous research has reported the significant influence of rRNA-mRNA interactions, mainly in the initiation phase of translation. The results reported in this paper suggest that, in addition to the rRNA-mRNA interactions near the start codon that trigger initiation in bacteria, rRNA-mRNA interactions affect all sub-stages of the translation process (pre-initiation, initiation, elongation, termination). As these interactions dictate translation efficiency, they serve as an evolutionary driving force for shaping transcripts in bacteria while considering trade-offs between the effects of different interactions across different transcript regions on translation efficacy and efficiency. We observed selection for strong interactions in regions where such interactions are likely to enhance initiation, regulate early elongation, and ensure translation termination fidelity. We discovered selection against strong interactions and for intermediate interactions in coding regions and presented evidence that these patterns maximize elongation efficiency while also enhancing initiation. These finding are relevant to all biomedical disciplines due to the centrality of the translation process and the effect of rRNA-mRNA interactions on transcript evolution.
    Keywords:  Shine-Dalgarno; protein translation in bacteria; rRNA-mRNA interaction; translation elongation; translation initiation; translation termination
    DOI:  https://doi.org/10.1080/15476286.2021.1978767
  5. Nat Commun. 2021 Sep 27. 12(1): 5666
      In eukaryotes, an Hsp70 molecular chaperone triad assists folding of nascent chains emerging from the ribosome tunnel. In fungi, the triad consists of canonical Hsp70 Ssb, atypical Hsp70 Ssz1 and J-domain protein cochaperone Zuo1. Zuo1 binds the ribosome at the tunnel exit. Zuo1 also binds Ssz1, tethering it to the ribosome, while its J-domain stimulates Ssb's ATPase activity to drive efficient nascent chain interaction. But the function of Ssz1 and how Ssb engages at the ribosome are not well understood. Employing in vivo site-specific crosslinking, we found that Ssb(ATP) heterodimerizes with Ssz1. Ssb, in a manner consistent with the ADP conformation, also crosslinks to ribosomal proteins across the tunnel exit from Zuo1. These two modes of Hsp70 Ssb interaction at the ribosome suggest a functionally efficient interaction pathway: first, Ssb(ATP) with Ssz1, allowing optimal J-domain and nascent chain engagement; then, after ATP hydrolysis, Ssb(ADP) directly with the ribosome.
    DOI:  https://doi.org/10.1038/s41467-021-25930-8
  6. Biochemistry (Mosc). 2021 Sep;86(9): 1151-1161
      Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.
    Keywords:  mitochondria; translation; translation regulation; translational activators
    DOI:  https://doi.org/10.1134/S0006297921090108
  7. Int J Mol Sci. 2021 Sep 07. pii: 9679. [Epub ahead of print]22(18):
      The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5'UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.
    Keywords:  autogenous regulation; mycobacteria; ribosomal proteins; shuttle vectors
    DOI:  https://doi.org/10.3390/ijms22189679