bims-mitran Biomed News
on Mitochondrial translation
Issue of 2025–12–21
two papers selected by
Andreas Kohler, Umeå University



  1. J Biol Chem. 2025 Dec 17. pii: S0021-9258(25)02922-9. [Epub ahead of print] 111070
      COX6B1 is a nuclear-encoded subunit of the human mitochondrial cytochrome c oxidase (cIV) located in its intermembrane space-facing region. The relevance of COX6B1 in mitochondrial physiopathology was highlighted by the missense pathogenic variants associated with cIV deficiency. Despite the assigned COX6B1 role as a late incorporation subunit, the COX6B1 human cell line knock-out (KO) exhibited a total loss of cIV. To get a deeper insight into the mechanisms driving the lack of cIV assembly or destabilization in the absence of COX6B1, we used the COX6B1 KO cell background to express alternative oxidase and COX6B1 pathogenic variants. These analyses uncovered that the COX6B1 subunit is indispensable for redox-sensitive early cIV assembly steps, besides its contribution to the stabilization of cIV in the late assembly stages. In addition, we have evidenced the incorporation of partially assembled cIV modules directly into supercomplex structures, supporting the 'cooperative assembly' model for respiratory chain biogenesis.
    Keywords:  COX; COX6B1; COX6B2; OXPHOS assembly; alternative oxidase; cIV; complex IV; cytochrome c oxidase; mitochondrial deficiency; respiratory chain supercomplexes
    DOI:  https://doi.org/10.1016/j.jbc.2025.111070
  2. Nat Cell Biol. 2025 Dec 15.
      Mitochondrial dynamics and mtDNA homeostasis have been linked to specialized mitochondrial subdomains known as small MTFP1-enriched mitochondria (SMEM), though the underlying molecular mechanisms remain unclear. Here we identified MISO (mitochondrial inner membrane subdomain organizer), a conserved protein that regulates both mitochondrial dynamics and SMEM formation in Drosophila and mammalian cells. MISO inhibits fusion by recruiting MTFP1 and promotes fission through FIS1-DRP1. Furthermore, MISO drives SMEM biogenesis and facilitates their peripheral fission that promotes lysosomal degradation of mtDNA. Genetic ablation of MISO abolishes SMEM generation, confirming that MISO is both necessary and sufficient for SMEM formation. Inner mitochondrial membrane stresses, including mtDNA damages, OXPHOS dysfunction and cristae disruption, stabilize the otherwise short-lived MISO protein, thereby triggering SMEM assembly. This process depends on the C-terminal domain of MISO, likely mediated by oligomerization. Together, our findings reveal a molecular pathway through which inner mitochondrial membrane stresses modulate mitochondrial dynamics and mtDNA homeostasis via MISO-orchestrated SMEM organization.
    DOI:  https://doi.org/10.1038/s41556-025-01829-0