bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2021–12–12
forty-one papers selected by
Anna Vainshtein, Craft Science Inc.



  1. Open Biol. 2021 Dec;11(12): 210110
      Skeletal muscle possesses a remarkable regenerative capacity that relies on the activity of muscle stem cells, also known as satellite cells. The presence of non-myogenic cells also plays a key role in the coordination of skeletal muscle regeneration. Particularly, fibro-adipogenic progenitors (FAPs) emerged as master regulators of muscle stem cell function and skeletal muscle regeneration. This population of muscle resident mesenchymal stromal cells has been initially characterized based on its bi-potent ability to differentiate into fibroblasts or adipocytes. New technologies such as single-cell RNAseq revealed the cellular heterogeneity of FAPs and their complex regulatory network during muscle regeneration. In acute injury, FAPs rapidly enter the cell cycle and secrete trophic factors that support the myogenic activity of muscle stem cells. Conversely, deregulation of FAP cell activity is associated with the accumulation of fibrofatty tissue in pathological conditions such as muscular dystrophies and ageing. Considering their central role in skeletal muscle pathophysiology, the regulatory mechanisms of FAPs and their cellular and molecular crosstalk with muscle stem cells are highly investigated in the field. In this review, we summarize the current knowledge on FAP cell characteristics, heterogeneity and the cellular crosstalk during skeletal muscle homeostasis and regeneration. We further describe their role in muscular disorders, as well as different therapeutic strategies targeting these cells to restore muscle regeneration.
    Keywords:  fibro-adipogenic progenitors; fibrosis; mesenchymal stromal cells; muscle stem cells; muscular disorders; myogenesis
    DOI:  https://doi.org/10.1098/rsob.210110
  2. Front Pharmacol. 2021 ;12 731386
      Background: Cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, making up for about 20% of cancer-related death. However, there are no effective drugs to combat cachexia at present. Methods: In this study, the effect of CT26 exosomes on C2C12 myotubes was observed. We compared serum HMGB1 level in cachexia and non-cachexia colon cancer patients. We further explored HMGB1 expression level in CT26 exosome. We added recombinant HMGB1 to C2C12 myotubes to observe the effects of HMGB1 on C2C12 myotubes and detected the expression level of the muscle atrophy-related proteins. Then, we used the HMGB1 inhibitor glycyrrhizin to reverse the effects of HMGB1 on C2C12 myotubes. Finally, HMGB1 inhibitor glycyrrhizin was utilized to relieve cachexia in CT26 cachexia mouse model. Results: Exosomes containing HMGB1 led to muscle atrophy with significantly decreased myotube diameter and increased expression of muscle atrophy-related proteins Atrogin1 and MuRF1. Further, we detected that HMGB1 induced the muscle atrophy mainly via TLR4/NF-κB pathway. Administration of the HMGB1 inhibitor glycyrrhizin could relieve muscle wasting in vitro and attenuate the progression of cachexia in vivo. Conclusion: These findings demonstrate the cachectic role of HMGB1, whether it is soluble form of HMGB1 or secreted from tumor cells as part of exosomes. HMGB1 inhibitor glycyrrhizin might be a promising drug in colon cancer cachexia.
    Keywords:  HMGB1; NF-κB; TLR4; cancer cachexia; skeletal muscle
    DOI:  https://doi.org/10.3389/fphar.2021.731386
  3. Am J Physiol Endocrinol Metab. 2021 Dec 06.
      In mice, exercise is suggested to activate the mechanistic target of rapamycin complex 2 (mTORC2) in skeletal muscle, and mTORC2 is required for normal muscle glucose uptake during exercise. Whether this translates to human skeletal muscle and what signaling pathways facilitate the exercise-induced mTORC2 activation is unknown but important to determine given the important role of mTORC2 in metabolism. We herein tested the hypothesis that exercise increases mTORC2 activity in human skeletal muscle and investigated if β2-adrenergic receptor (AR) activation mediates exercise-induced mTORC2 activation. We examined several mTORC2 activity readouts (p-NDRG1 Thr346, p-Akt Ser473, p-mTOR S2481, and p-Akt Thr450) in human skeletal muscle biopsies after uphill walking or cycling exercise. In mouse muscles, we assessed mTORC2 activity readouts following acute activation of muscle β2-adrenergic or Gs signaling and during in vivo and ex vivo muscle contractions. Exercise increased phosphorylation of NDRG1 Thr346 in human soleus, gastrocnemius, and vastus lateralis muscle, without changing p-Akt Ser473, p-Akt Thr450, and p-mTOR Ser2481. In mouse muscle, stimulation of β2-adrenergic or Gs signaling and ex vivo contractions failed to increase p-NDRG1 Thr346, while in vivo contractions were sufficient to induce p-NDRG1 Thr346. In conclusion, the mTORC2 activity readout p-NDRG1 Thr346 is a novel exercise-responsive signaling protein in human skeletal muscle. Notably, contraction-induced p-NDRG1 Thr346 appears to require a systemic factor. Unlike exercise, and in contrast to published data obtained in cultured muscles cells, stimulation of β2-adrenergic signaling is not sufficient to trigger NDRG1 phosphorylation in mature mouse skeletal muscle.
    Keywords:  Exercise; Humans; Skeletal muscle; mTORC2; β-adrenergic signaling
    DOI:  https://doi.org/10.1152/ajpendo.00389.2021
  4. Physiol Rep. 2021 Dec;9(23): e15137
      Many of the molecular and cellular mechanisms discovered to regulate skeletal muscle hypertrophy were first identified using the rodent synergist ablation model. This model reveals the intrinsic capability and necessary pathways of skeletal muscle growth in response to mechanical overload (MOV). Reminiscent of the rapid cellular growth observed with cancer, we hypothesized that in response to MOV, skeletal muscle would undergo metabolic programming to sustain increased demands to support hypertrophy. To test this hypothesis, we analyzed the gene expression of specific metabolic pathways taken from transcriptomic microarray data of a MOV time course. We found an upregulation of genes involved in the oxidative branch of the pentose phosphate pathways (PPP) and mitochondrial branch of the folate cycle suggesting an increase in the production of NADPH. In addition, we sought to determine the potential role of skeletal muscle-enriched microRNA (myomiRs) and satellite cells in the regulation of the metabolic pathways that changed during MOV. We observed an inverse pattern in gene expression between muscle-enriched myomiR-1 and its known target gene glucose-6-phosphate dehydrogenase, G6pdx, suggesting myomiR regulation of PPP activation in response to MOV. Satellite cell fusion had a significant but modest impact on PPP gene expression. These transcriptomic findings suggest the robust muscle hypertrophy induced by MOV requires enhanced redox metabolism via PPP production of NADPH which is potentially regulated by a myomiR network.
    Keywords:  NADPH; myomiR; pentose phosphate pathway; redox metabolism; skeletal muscle hypertrophy
    DOI:  https://doi.org/10.14814/phy2.15137
  5. J Cachexia Sarcopenia Muscle. 2021 Dec 08.
       BACKGROUND: Vitamin D deficiency leads to pathologies of multiple organ systems including skeletal muscle. Patients with severe vitamin D deficiency exhibit muscle weakness and are susceptible to frequent falls. Mice lacking a functional vitamin D receptor (VDR) develop severe skeletal muscle atrophy immediately after weaning. But the root cause of myopathies when vitamin D signalling is impaired is unknown. Because vitamin D deficiency leads to metabolic changes as well, we hypothesized that the skeletal muscle atrophy in mice lacking VDR may have a metabolic origin.
    METHODS: We analysed wild-type (WT) mice as well as vitamin D receptor null (vdr-/-) mice for skeletal muscle proteostasis, energy metabolism, systemic glucose homeostasis, and muscle glycogen levels. Dysregulation of signalling pathways as well as the glycogen synthesis and utilization machinery were also analysed using western blots. qRT-PCR assays were performed to understand changes in mRNA levels.
    RESULTS: Skeletal muscles of vdr-/- exhibited higher expression levels of muscle-specific E3 ubiquitin ligases and showed increased protein ubiquitination, suggesting up-regulation of protein degradation. Foxo1 transcription factor was activated in vdr-/- while Foxo3 factor was unaffected. Fasting protein synthesis as well as mTORC1 pathways were severely down-regulated in vdr-/- mice. Skeletal muscle ATP levels were low in vdr-/- (0.58 ± 0.18 μmol/mL vs. 1.6 ± 0.0.14 μmol/mL, P = 0.006), leading to increased AMPK activity. Muscle energy deprivation was not caused by decreased mitochondrial activity as we found the respiratory complex II activity in vdr-/- muscles to be higher compared with WT (0.29 ± 0.007 mU/μL vs. 0.16 ± 0.005 mU/μL). vdr-/- mice had lower fasting blood glucose levels (95 ± 14.5 mg/dL vs. 148.6 ± 6.1 mg/dL, P = 0.0017) while they exhibited hyperlactataemia (7.42 ± 0.31 nmol/μL vs. 4.95 ± 0.44 nmol/μL, P = 0.0032), suggesting systemic energy deficiency in these mice. Insulin levels in these mice were significantly lower in response to intraperitoneal glucose injection (0.69 ± 0.08 pg/mL vs. 1.11 ± 0.09 pg/mL, P = 0.024). Skeletal muscles of these mice exhibit glycogen storage disorder characterized by increased glycogen accumulation. The glycogen storage disorder in vdr-/- muscles is driven by increased glycogen synthase activity and decreased glycogen phosphorylase activity. Increased glycogenin expression supports higher levels of glycogen synthesis in these muscles.
    CONCLUSIONS: The results presented show that lack of vitamin D signalling leads to a glycogen storage defect in the skeletal muscles, which leads to muscle energy deprivation. The inability of vdr-/- skeletal muscles to use glycogen leads to systemic defects in glucose homeostasis, which in turn leads to proteostasis defects in skeletal muscles and atrophy.
    Keywords:  Atrophy; Energy metabolism; Glucose homeostasis; Glycogen; Proteostasis; Skeletal muscle; VDR; Vitamin D
    DOI:  https://doi.org/10.1002/jcsm.12841
  6. Front Physiol. 2021 ;12 708278
      Skeletal muscle growth and maintenance depend on two tightly regulated processes, myogenesis and muscle regeneration. Both processes involve a series of crucial regulatory molecules including muscle-specific microRNAs, known as myomiRs. We recently showed that four myomiRs, miR-1, miR-133a, miR-133b, and miR-206, are encapsulated within muscle-derived exosomes and participate in local skeletal muscle communication. Although these four myomiRs have been extensively studied for their function in muscles, no information exists regarding their endogenous and exosomal levels across age. Here we aimed to identify any age-related changes in the endogenous and muscle-derived exosomal myomiR levels during acute skeletal muscle growth. The four endogenous and muscle-derived myomiRs were investigated in five skeletal muscles (extensor digitorum longus, soleus, tibialis anterior, gastrocnemius, and quadriceps) of 2-week-1-year-old wild-type male mice. The expression of miR-1, miR-133a, and miR-133b was found to increase rapidly until adolescence in all skeletal muscles, whereas during adulthood it remained relatively stable. By contrast, endogenous miR-206 levels were observed to decrease with age in all muscles, except for soleus. Differential expression of the four myomiRs is also inversely reflected on the production of two protein targets; serum response factor and connexin 43. Muscle-derived exosomal miR-1, miR-133a, and miR-133b levels were found to increase until the early adolescence, before reaching a plateau phase. Soleus was found to be the only skeletal muscle to release exosomes enriched in miR-206. In this study, we showed for the first time an in-depth longitudinal analysis of the endogenous and exosomal levels of the four myomiRs during skeletal muscle development. We showed that the endogenous expression and extracellular secretion of the four myomiRs are associated to the function and size of skeletal muscles as the mice age. Overall, our findings provide new insights for the myomiRs' significant role in the first year of life in mice.
    Keywords:  age; differential expression; muscle endogenous; muscle growth; muscle-derived exosomes; myomiRs; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2021.708278
  7. Curr Mol Med. 2021 Dec 06.
       BACKGROUND: Sarcopenia is a progressive and generalized skeletal muscle disorder characterized by muscle weakness, loss of muscle mass, and decline in the capacity of force generation. Aging can cause sarcopenia. Several therapeutic strategies have been evaluated to prevent or alleviate this disorder. One of them is angiotensin 1-7 [Ang-(1-7)], an anti-atrophic peptide for skeletal muscles that regulates decreased muscle mass for several causes, including aging. Another regulator of muscle mass and function is andrographolide, a bicyclic diterpenoid lactone that decreases the nuclear factor kappa B (NF-κB) signaling and attenuates the severity of some muscle diseases.
    OBJECTIVE: Evaluate the effect of combined administration of Ang-(1-7) with andrographolide on the physical performance, muscle strength, and fiber´s diameter in a murine model of sarcopenia by aging.
    METHODS: Aged male mice of the C57BL/6J strain were treated with Andrographolide, Ang-(1-7), or combined for three months. The physical performance, muscle strength, and fiber´s diameter were measured.
    RESULTS: The results showed that aged mice (24 months old) treated with Ang-(1-7) or Andrographolide improved their performance on a treadmill test, muscle strength, and their fiber´s diameter compared to aged mice without treatment. The combined administration of Ang-(1-7) with andrographolide to aged mice has an enhanced synergically effect on physical performance, muscle strength, and fiber´s diameter.
    CONCLUSION: Our results indicated that in aged mice, the effects of andrographolide and Ang-(1-7) on muscle function, strength, and fiber´s diameter are potentiated.
    Keywords:  Angiotensin- (1-7); Muscle Function; Sarcopenia; physical performance; renin-angiotensin system; weakness
    DOI:  https://doi.org/10.2174/1566524021666211207112106
  8. Int J Mol Sci. 2021 Nov 30. pii: 12985. [Epub ahead of print]22(23):
      Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting following repeated muscle damage and inadequate regeneration. Impaired myogenesis and differentiation play a major role in DMD as well as intracellular calcium (Ca2+) mishandling. Ca2+ release from the sarcoplasmic reticulum is mostly mediated by the type 1 ryanodine receptor (RYR1) that is required for skeletal muscle differentiation in animals. The study objective was to determine whether altered RYR1-mediated Ca2+ release contributes to myogenic differentiation impairment in DMD patients. The comparison of primary cultured myoblasts from six boys with DMD and five healthy controls highlighted delayed myoblast differentiation in DMD. Silencing RYR1 expression using specific si-RNA in a healthy control induced a similar delayed differentiation. In DMD myotubes, resting intracellular Ca2+ concentration was increased, but RYR1-mediated Ca2+ release was not changed compared with control myotubes. Incubation with the RYR-calstabin interaction stabilizer S107 decreased resting Ca2+ concentration in DMD myotubes to control values and improved calstabin1 binding to the RYR1 complex. S107 also improved myogenic differentiation in DMD. Furthermore, intracellular Ca2+ concentration was correlated with endomysial fibrosis, which is the only myopathologic parameter associated with poor motor outcome in patients with DMD. This suggested a potential relationship between RYR1 dysfunction and motor impairment. Our study highlights RYR1-mediated Ca2+ leakage in human DMD myotubes and its key role in myogenic differentiation impairment. RYR1 stabilization may be an interesting adjunctive therapeutic strategy in DMD.
    Keywords:  Duchenne muscular dystrophy; endomysial fibrosis; human; myogenesis; ryanodine receptor
    DOI:  https://doi.org/10.3390/ijms222312985
  9. Function (Oxf). 2021 ;2(5): zqab038
      Using a mouse model of conditional and inducible in vivo fluorescent myonuclear labeling (HSA-GFP), sorting purification of nuclei, low-input reduced representation bisulfite sequencing (RRBS), and a translatable and reversible model of exercise (progressive weighted wheel running, PoWeR), we provide the first nucleus type-specific epigenetic information on skeletal muscle adaptation and detraining. Adult (>4 mo) HSA-GFP mice performed PoWeR for 8 wk then detrained for 12 wk; age-matched untrained mice were used to control for the long duration of the study. Myonuclei and interstitial nuclei from plantaris muscles were isolated for RRBS. Relative to untrained, PoWeR caused similar myonuclear CpG hypo- and hyper-methylation of promoter regions and substantial hypomethylation in interstitial nuclear promoters. Over-representation analysis of promoters revealed a larger number of hyper- versus hypo-methylated pathways in both nuclear populations after training and evidence for reciprocal regulation of methylation between nucleus types, with hypomethylation of promoter regions in Wnt signaling-related genes in myonuclei and hypermethylation in interstitial nuclei. After 12 wk of detraining, promoter CpGs in documented muscle remodeling-associated genes and pathways that were differentially methylated immediately after PoWeR were persistently differentially methylated in myonuclei, along with long-term promoter hypomethylation in interstitial nuclei. No enduring gene expression changes in muscle tissue were observed using RNA-sequencing. Upon 4 wk of retraining, mice that trained previously grew more at the whole muscle and fiber type-specific cellular level than training naïve mice, with no difference in myonuclear number. Muscle nuclei have a methylation epi-memory of prior training that may augment muscle adaptability to retraining.
    Keywords:  epigenetics; exercise training; methylation; muscle memory; myonuclei; skeletal muscle
    DOI:  https://doi.org/10.1093/function/zqab038
  10. Front Mol Neurosci. 2021 ;14 797832
      
    Keywords:  aging; experimental disease models; motor neuron; muscle weakness; neuromuscular disease; neuromuscular junction; skeletal muscle
    DOI:  https://doi.org/10.3389/fnmol.2021.797832
  11. Int J Mol Sci. 2021 Nov 23. pii: 12617. [Epub ahead of print]22(23):
      Dystrophin is a 427 kDa protein that stabilizes muscle cell membranes through interactions with the cytoskeleton and various membrane-associated proteins. Loss of dystrophin as in Duchenne muscular dystrophy (DMD) causes progressive skeletal muscle weakness and cardiac dysfunction. Multiple promoters along the dystrophin gene (DMD) give rise to a number of shorter isoforms. Of interest is Dp71, a 71 kDa isoform implicated in DMD pathology by various animal and patient studies. Strong evidence supporting such a role for Dp71, however, is lacking. Here, we use del52;WT mice to understand how Dp71 overexpression affects skeletal and cardiac muscle phenotypes. Apart from the mouse Dmd gene, del52;WT mice are heterozygous for a full-length, exon 52-deleted human DMD transgene expected to only permit Dp71 expression in muscle. Thus, del52;WT mice overexpress Dp71 through both the human and murine dystrophin genes. We observed elevated Dp71 protein in del52;WT mice, significantly higher than wild-type in the heart but not the tibialis anterior. Moreover, del52;WT mice had generally normal skeletal muscle but impaired cardiac function, exhibiting significant systolic dysfunction as early as 3 months. No histological abnormalities were found in the tibialis anterior and heart. Our results suggest that Dp71 overexpression may have more detrimental effects on the heart than on skeletal muscles, providing insight into the role of Dp71 in DMD pathogenesis.
    Keywords:  Dp71; Duchenne muscular dystrophy; WT mice; cardiac dysfunction; del52; dystrophic animal model; dystrophin; hDMDdel52 mice
    DOI:  https://doi.org/10.3390/ijms222312617
  12. J Cachexia Sarcopenia Muscle. 2021 Dec 08.
       BACKGROUND: Most of the microRNAs (MiRs) involved in myogenesis are transcriptional regulated. The role of MiR biogenesis in myogenesis has not been characterized yet. RNA-binding protein Musashi 2 (Msi2) is considered to be one of the major drivers for oncogenesis and stem cell proliferation. The functions of Msi2 in myogenesis have not been explored yet. We sought to investigate Msi2-regulated biogenesis of MiRs in myogenesis and muscle stem cell (MuSC) ageing.
    METHODS: We detected the expression of Msi2 in MuSCs and differentiated myotubes by quantitative reverse transcription PCR (RT-qPCR) and western blot. Msi2-binding partner human antigen R (HuR) was identified by immunoprecipitation followed by mass spectrometry analysis. The cooperative binding of Msi2 and HuR on MiR7a-1 was analysed by RNA immunoprecipitation and electrophoresis mobility shift assays. The inhibition of the processing of pri-MiR7a-1 mediated by Msi2 and HuR was shown by Msi2 and HuR knockdown. Immunofluorescent staining, RT-qPCR and immunoblotting were used to characterize the function of MiR7a-1 in myogenesis. Msi2 and HuR up-regulate cryptochrome circadian regulator 2 (Cry2) via MiR7a-1 was confirmed by the luciferase assay and western blot. The post-transcriptional regulatory cascade was further confirmed by RNAi and overexpressing of Msi2 and HuR in MuSCs, and the in vivo function was characterized by histopathological and molecular biological methods in Msi2 knockout mice.
    RESULTS: We identified a post-transcription regulatory cascade governed by a pair of RNA-binding proteins Msi2 and HuR. Msi2 is enriched in differentiated muscle cells and promotes MuSC differentiation despite its pro-proliferation functions in other cell types. Msi2 works synergistically with another RNA-binding protein HuR to repress the biogenesis of MiR7a-1 in an Msi2 dose-dependent manner to regulate the translation of the key component of the circadian core oscillator complex Cry2. Down-regulation of Cry2 (0.6-fold, vs. control, P < 0.05) mediated by MiR7a-1 represses MuSC differentiation. The disruption of this cascade leads to differentiation defects of MuSCs. In aged muscles, Msi2 (0.3-fold, vs. control, P < 0.01) expression declined, and the Cry2 protein level also decreases (0.5-fold, vs. control, P < 0.05), suggesting that the disruption of the Msi2-mediated post-transcriptional regulatory cascade could attribute to the declined ability of muscle regeneration in aged skeletal muscle.
    CONCLUSIONS: Our findings have identified a new post-transcriptional cascade regulating myogenesis. The cascade is disrupted in skeletal muscle ageing, which leads to declined muscle regeneration ability.
    Keywords:  HuR; MiR7a-1 processing; Msi2; Myogenesis; Skeletal muscle ageing
    DOI:  https://doi.org/10.1002/jcsm.12882
  13. Int J Environ Res Public Health. 2021 Nov 29. pii: 12558. [Epub ahead of print]18(23):
      The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch's contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch's importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch's contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch's orchestration is useful for developing therapeutic targets for disease.
    Keywords:  Hes1; Pax7; Wnt; cachexia; mTOR; muscle repair; satellite cells
    DOI:  https://doi.org/10.3390/ijerph182312558
  14. Nat Commun. 2021 Dec 10. 12(1): 7219
      Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
    DOI:  https://doi.org/10.1038/s41467-021-27422-1
  15. J Muscle Res Cell Motil. 2021 Dec 10.
      Making benefit from the epigenetic effects of environmental factors such as physical activity may result in a considerable improvement in the prevention of chronic civilization diseases. In our chronic swimming rat model, the expression levels of such microRNAs were characterized, that are involved in skeletal muscle differentiation, hypertrophy and fine-tuning of metabolism, which processes are influenced by chronic endurance training, contributing to the metabolic adaptation of skeletal muscle during physical activity. After chronic swimming, the level of miR-128a increased significantly in EDL muscles, which may influence metabolic adaptation and stress response as well. In SOL, the expression level of miR-15b and miR-451 decreased significantly after chronic swimming, which changes are opposite to their previously described increment in insulin resistant skeletal muscle. MiR-451 also targets PGC-1α mRNA, whiches expression level significantly increased in SOL muscles, resulting in enhanced biogenesis and oxidative capacity of mitochondria. In summary, the microRNA expression changes that were observed during our experiments suggest that chronic swim training contributes to a beneficial metabolic profile of skeletal muscle.
    Keywords:  Epigenetics; Metabolism; Physical activity; Prevention; Skeletal muscle; microRNA
    DOI:  https://doi.org/10.1007/s10974-021-09612-y
  16. Expert Rev Proteomics. 2021 Dec 10.
       INTRODUCTION: : Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis.
    AREAS COVERED: : Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic and aging skeletal muscle tissues.
    EXPERT OPINION: : The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
    Keywords:  CA3; aging; biomarker; carbonic anhydrase; denervation; dystrophinopathy; muscle damage; muscle degeneration; muscular dystrophy; sarcopenia of old age
    DOI:  https://doi.org/10.1080/14789450.2021.2017776
  17. Int J Mol Sci. 2021 Nov 25. pii: 12727. [Epub ahead of print]22(23):
      Skeletal muscle development and regeneration rely on the successive activation of specific transcription factors that engage cellular fate, promote commitment, and drive differentiation. Emerging evidence demonstrates that epigenetic regulation of gene expression is crucial for the maintenance of the cell differentiation status upon division and, therefore, to preserve a specific cellular identity. This depends in part on the regulation of chromatin structure and its level of condensation. Chromatin architecture undergoes remodeling through changes in nucleosome composition, such as alterations in histone post-translational modifications or exchange in the type of histone variants. The mechanisms that link histone post-translational modifications and transcriptional regulation have been extensively evaluated in the context of cell fate and differentiation, whereas histone variants have attracted less attention in the field. In this review, we discuss the studies that have provided insights into the role of histone variants in the regulation of myogenic gene expression, myoblast differentiation, and maintenance of muscle cell identity.
    Keywords:  H2A.Z; H3.3; HIRA; MYOD; PAX7; histone variants; macroH2A; myogenesis
    DOI:  https://doi.org/10.3390/ijms222312727
  18. J Appl Physiol (1985). 2021 Dec 09.
      Previous studies demonstrated that acute exercise can enhance glucose uptake (GU), γ3-AMPK activity, and Akt Substrate of 160 kDa (AS160) phosphorylation in skeletal muscles from low fat diet (LFD) and high fat diet (HFD) fed male rats. Because little is known about exercise-effects on these outcomes in females, we assessed postexercise GU by muscles incubated ±insulin, delta-insulin GU (GU of muscles incubated with insulin minus GU uptake of paired muscles incubated without insulin), and muscle signaling proteins from female rats fed a LFD or brief-HFD (2wk). Rats were sedentary (LFD-SED, HFD-SED) or swim-exercised. Immediately postexercise (IPEX) or 3h postexercise (3hPEX), epitrochlearis muscles were incubated (no insulin IPEX; ±insulin 3hPEX) to determine GU. Muscle γ3-AMPK activity (IPEX, 3hPEX) and phosphorylated AS160 (pAS160; 3hPEX) were also assessed. γ3-AMPK activity and insulin-independent GU of IPEX-rats exceeded sedentary-rats without diet-related differences in either outcome. At 3hPEX, both GU by insulin-stimulated muscles and delta-insulin GU exceeded their respective diet-matched sedentary controls. GU by insulin-stimulated muscles, but not delta-insulin GU for LFD-3hPEX exceeded HFD-3hPEX. LFD-3hPEX versus LFD-SED had greater γ3-AMPK activity and greater pAS160. HFD-3hPEX exceeded HFD-SED for pAS160, but not for γ3-AMPK activity. pAS160 and γ3-AMPK at 3hPEX did not differ between diet-groups. These results revealed that increased γ3-AMPK activity at 3hPEX was not essential for greater GU in insulin-stimulated muscle or greater delta-insulin GU in HFD-female rats. Similarly elevated γ3-AMPK activity in LFD-IPEX versus HFD-IPEX and pAS160 in LFD-3hPEX versus HFD-3hPEX may contribute to the comparable, delta-insulin GU at 3hPEX in both diet groups.
    Keywords:  AMP-activated protein kinase; TBC1D4; acute exercise; glucose uptake; insulin resistance
    DOI:  https://doi.org/10.1152/japplphysiol.00533.2021
  19. Nat Commun. 2021 Dec 08. 12(1): 7101
      Genome editing therapy for Duchenne muscular dystrophy (DMD) holds great promise, however, one major obstacle is delivery of the CRISPR-Cas9/sgRNA system to skeletal muscle tissues. In general, AAV vectors are used for in vivo delivery, but AAV injections cannot be repeated because of neutralization antibodies. Here we report a chemically defined lipid nanoparticle (LNP) system which is able to deliver Cas9 mRNA and sgRNA into skeletal muscle by repeated intramuscular injections. Although the expressions of Cas9 protein and sgRNA were transient, our LNP system could induce stable genomic exon skipping and restore dystrophin protein in a DMD mouse model that harbors a humanized exon sequence. Furthermore, administration of our LNP via limb perfusion method enables to target multiple muscle groups. The repeated administration and low immunogenicity of our LNP system are promising features for a delivery vehicle of CRISPR-Cas9 to treat skeletal muscle disorders.
    DOI:  https://doi.org/10.1038/s41467-021-26714-w
  20. Aging Dis. 2021 Dec;12(8): 2016-2030
      Sarcopenia is a common geriatric disorder characterized by decreased muscle strength, low muscle mass and poor physical performance. This aging-related skeletal muscle deterioration leads to adverse outcomes and severely impairs the quality of life of patients. The accumulation of dysfunctional mitochondria with aging is an important factor in the occurrence and progression of sarcopenia. Mitochondrial quality control (MQC) fundamentally ensures the normal mitochondrial functions and is comprised of four main parts: proteostasis, biogenesis, dynamics and autophagy. Therefore, any pathophysiologic factors compromising the quality control of homeostasis in the skeletal muscle may lead to sarcopenia. However, the specific theoretical aspects of these processes have not been fully elucidated. Current therapeutic interventions using nutritional and pharmaceutical treatments show a modest therapeutic efficacy; however, only physical exercise is recommended as the first-line therapy for sarcopenia, which can ameliorate skeletal muscle deficiency by maintaining the homeostatic MQC. In this review, we summarized the known mechanisms that contribute to the pathogenesis of sarcopenia by impairing normal mitochondrial functions and described potential interventions that mitigate sarcopenia through improving MQC.
    Keywords:  mitochondria; mitochondrial quality control; sarcopenia; therapeutic intervention
    DOI:  https://doi.org/10.14336/AD.2021.0427
  21. Int J Mol Sci. 2021 Nov 28. pii: 12885. [Epub ahead of print]22(23):
      LMO7 is a multifunctional PDZ-LIM protein that can interact with different molecular partners and is found in several intracellular locations. The aim of this work was to shed light on LMO7 evolution, alternative transcripts, protein structure and gene regulation through multiple in silico analyses. We also explored the intracellular distribution of the LMO7 protein in chicken and zebrafish embryonic skeletal muscle cells by means of confocal fluorescence microscopy. Our results revealed a single LMO7 gene in mammals, sauropsids, Xenopus and in the holostean fish spotted gar while two lmo7 genes (lmo7a and lmo7b) were identified in teleost fishes. In addition, several different transcripts were predicted for LMO7 in human and in major vertebrate model organisms (mouse, chicken, Xenopus and zebrafish). Bioinformatics tools revealed several structural features of the LMO7 protein including intrinsically disordered regions. We found the LMO7 protein in multiple intracellular compartments in chicken and zebrafish skeletal muscle cells, such as membrane adhesion sites and the perinuclear region. Curiously, the LMO7 protein was detected within the nuclei of muscle cells in chicken but not in zebrafish. Our data showed that a conserved regulatory element may be related to muscle-specific LMO7 expression. Our findings uncover new and important information about LMO7 and open new challenges to understanding how the diverse regulation, structure and distribution of this protein are integrated into highly complex vertebrate cellular milieux, such as skeletal muscle cells.
    Keywords:  LIM; LMO7; PDZ; bioinformatics; calponin homology; chicken; intrinsically disordered proteins; skeletal muscle; zebrafish
    DOI:  https://doi.org/10.3390/ijms222312885
  22. J Mol Biol. 2021 Dec 02. pii: S0022-2836(21)00621-5. [Epub ahead of print] 167384
      The destiny of a messenger RNA is determined from a combination of in cis elements, like peculiar secondary structures and in trans modulators, such as RNA binding proteins and non-coding, regulatory RNAs. RNA guanine quadruplexes belong to the first group: these strong secondary structures have been characterized in many mRNAs, and their stabilization or unwinding provides an additional step for the fine tuning of mRNA stability and translation. On the other hand, many cytoplasmic long non-coding RNAs intervene in post-transcriptional regulation, frequently by direct base-pairing with their mRNA targets. We have previously identified the lncRNA SMaRT as a key modulator of the correct timing of murine skeletal muscle differentiation; when expressed, lnc-SMaRT interacts with a G-quadruplex-containing region of Mlx-γ mRNA, therefore inhibiting its translation by counteracting the DHX36 helicase activity. The "smart" mode of action of lnc-SMaRT led us to speculate whether this molecular mechanism could be extended to other targets and conserved in other species. Here, we show that the molecular complex composed by lnc-SMaRT and DHX36 also includes other mRNAs. We prove that lnc-SMaRT is able to repress Spire1 translation through base-pairing with its G-quadruplex-forming sequence, and that Spire1 modulation participates to the regulation of proper skeletal muscle differentiation. Moreover, we demonstrate that the interaction between DHX36 and lnc-SMaRT is indirect and mediated by the mRNAs present in the complex. Finally, we suggest an extendibility of the molecular mechanism of lnc-SMaRT from the mouse model to humans, identifying potential functional analogues.
    Keywords:  DHX36 helicase; G-quadruplex; long ncRNAs; myogenesis; post-transcriptional regulation
    DOI:  https://doi.org/10.1016/j.jmb.2021.167384
  23. J Cachexia Sarcopenia Muscle. 2021 Dec 08.
      Acute myeloid leukaemia (AML) is a haematological malignancy with poor survival odds, particularly in the older (>65 years) population, in whom it is most prevalent. Treatment consists of induction and consolidation chemotherapy to remit the cancer followed by potentially curative haematopoietic cell transplantation. These intense treatments are debilitating and increase the risk of mortality. Patient stratification is used to mitigate this risk and considers a variety of factors, including body mass, to determine whether a patient is suitable for any or all treatment options. Skeletal muscle mass, the primary constituent of the body lean mass, may be a better predictor of patient suitability for, and outcomes of, AML treatment. Yet skeletal muscle is compromised by a variety of factors associated with AML and its clinical treatment consistent with cachexia, a life-threatening body wasting syndrome. Cachectic muscle wasting is associated with both cancer and anticancer chemotherapy. Although not traditionally associated with haematological cancers, cachexia is observed in AML and can have dire consequences. In this review, we discuss the importance of addressing skeletal muscle mass and cachexia within the AML clinical landscape in view of improving survivability of this disease.
    Keywords:  Acute myeloid leukaemia; Cachexia; Cancer; Chemotherapy; Myopathy; Risk stratification; Skeletal muscle
    DOI:  https://doi.org/10.1002/jcsm.12880
  24. Front Cell Dev Biol. 2021 ;9 790341
      Collagen VI is distributed in the interstitium and is secreted mainly by mesenchymal stromal cells (MSCs) in skeletal muscle. Mutations in COL6A1-3 genes cause a spectrum of COL6-related myopathies. In this study, we performed a systemic transplantation study of human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) into neonatal immunodeficient COL6-related myopathy model (Col6a1 KO /NSG) mice to validate the therapeutic potential. Engraftment of the donor cells and the resulting rescued collagen VI were observed at the quadriceps and diaphragm after intraperitoneal iMSC transplantation. Transplanted mice showed improvement in pathophysiological characteristics compared with untreated Col6a1 KO /NSG mice. In detail, higher muscle regeneration in the transplanted mice resulted in increased muscle weight and enlarged myofibers. Eight-week-old mice showed increased muscle force and performed better in the grip and rotarod tests. Overall, these findings support the concept that systemic iMSC transplantation can be a therapeutic option for COL6-related myopathies.
    Keywords:  COL6-related myopathy; iPS cell; mesenchymal stromal cells; systemic cell transplantation; ullrich congenital muscular dystrophy (UCMD)
    DOI:  https://doi.org/10.3389/fcell.2021.790341
  25. Cells Dev. 2021 Dec 01. pii: S2667-2901(21)00094-2. [Epub ahead of print] 203760
      Muscles generate forces for animal locomotion. The contractile apparatus of muscles is the sarcomere, a highly regular array of large actin and myosin filaments linked by gigantic titin springs. During muscle development many sarcomeres assemble in series into long periodic myofibrils that mechanically connect the attached skeleton elements. Thus, ATP-driven myosin forces can power movement of the skeleton. Here we review muscle and myofibril morphogenesis, with a particular focus on their mechanobiology. We describe recent progress on the molecular structure of sarcomeres and their mechanical connections to the skeleton. We discuss current models predicting how tension coordinates the assembly of key sarcomeric components to periodic myofibrils that then further mature during development. This requires transcriptional feedback mechanisms that may help to coordinate myofibril assembly and maturation states with the transcriptional program. To fuel the varying energy demands of muscles we also discuss the close mechanical interactions of myofibrils with mitochondria and nuclei to optimally support powerful or enduring muscle fibers.
    Keywords:  Biomechanics; Drosophila; Mitochondria; Muscle; Sarcomere; Titin
    DOI:  https://doi.org/10.1016/j.cdev.2021.203760
  26. Histol Histopathol. 2021 Dec 07. 18403
      Duchenne muscular dystrophy is an inherited disorder of early childhood that affects multiple systems in the body. Besides late-onset cardio-respiratory syndrome and various body-wide pathophysiological changes, X-linked muscular dystrophy is primarily classified as a disorder of the skeletal musculature. This is reflected by severe histopathological alterations in voluntary contractile tissues, including progressive fibre degeneration, fat substitution, reactive myofibrosis and chronic inflammation. The underlying cause for dystrophinopathy are genetic abnormalities in the DMD gene, which can result in the almost complete loss of the membrane cytoskeletal protein dystrophin, which triggers the collapse of the dystrophin-associated glycoprotein complex and disintegration of sarcolemmal integrity. This in turn results in an increased frequency of membrane micro-rupturing and abnormal calcium ion fluxes through the impaired plasmalemma, which renders muscle fibres more susceptible to enhanced proteolytic degradation and necrosis. This review focuses on the complexity of skeletal muscle changes in X-linked muscular dystrophy and outlines cell biological and histological alterations in correlation to proteome-wide variations as judged by mass spectrometric analyses. This includes a general outline of sample handling, subcellular fraction protocols and modern proteomic approaches using gel electrophoretic and liquid chromatographic methods for efficient protein separation prior to mass spectrometry. The proteomic profiling of the dystrophic and highly fibrotic diaphragm muscle is described as an example to swiftly identify novel proteomic markers of complex histopathological changes during skeletal muscle degeneration. The potential usefulness of new protein markers is examined in relation to key histopathological hallmarks for establishing improved diagnostic, prognostic and therapy-monitoring approaches in the field of dystrophinopathy.
    DOI:  https://doi.org/10.14670/HH-18-403
  27. Exp Cell Res. 2021 Dec 06. pii: S0014-4827(21)00524-3. [Epub ahead of print] 112968
      Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
    Keywords:  Muscle protection; Muscular Dystrophies; Nanocarriers; Nutrigenomics; Secondary therapies
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112968
  28. Redox Biol. 2021 Nov 25. pii: S2213-2317(21)00356-6. [Epub ahead of print]48 102196
      Mutations in the human LMNA gene cause a collection of diseases called laminopathies, which includes muscular dystrophy and dilated cardiomyopathy. The LMNA gene encodes lamins, filamentous proteins that form a meshwork on the inner side of the nuclear envelope. How mutant lamins cause muscle disease is not well understood, and treatment options are currently limited. To understand the pathological functions of mutant lamins so that therapies can be developed, we generated new Drosophila models and human iPS cell-derived cardiomyocytes. In the Drosophila models, muscle-specific expression of the mutant lamins caused nuclear envelope defects, cytoplasmic protein aggregation, activation of the Nrf2/Keap1 redox pathway, and reductive stress. These defects reduced larval motility and caused death at the pupal stage. Patient-derived cardiomyocytes expressing mutant lamins showed nuclear envelope deformations. The Drosophila models allowed for genetic and pharmacological manipulations at the organismal level. Genetic interventions to increase autophagy, decrease Nrf2/Keap1 signaling, or lower reducing equivalents partially suppressed the lethality caused by mutant lamins. Moreover, treatment of flies with pamoic acid, a compound that inhibits the NADPH-producing malic enzyme, partially suppressed lethality. Taken together, these studies have identified multiple new factors as potential therapeutic targets for LMNA-associated muscular dystrophy.
    Keywords:  Drosophila; Lamins; Muscular dystrophy; Nuclear envelope; Reductive stress
    DOI:  https://doi.org/10.1016/j.redox.2021.102196
  29. Mol Metab. 2021 Dec 06. pii: S2212-8778(21)00273-8. [Epub ahead of print] 101415
       OBJECTIVE: The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.
    METHODS: To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (β2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively).
    RESULTS: Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. However, the acute metabolic effects following agonist activation of β2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling.
    CONCLUSION: Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.
    Keywords:  Clenbuterol; DREADD; G protein; GPCR; Glucose homeostasis; Skeletal muscle; Urocortin 2
    DOI:  https://doi.org/10.1016/j.molmet.2021.101415
  30. Br J Nutr. 2021 Dec 09. 1-27
      Taurine (Tau) has many profound physiological functions, but its role and molecular mechanism in muscle cells are still not fully understood. In this study, we investigated the role and underlying molecular mechanism of Tau on protein synthesis and proliferation of C2C12 myoblast cells. Cells were treated with Tau (0, 60, 120, 180 and 240 μM) for 24 h. Tau dose-dependently promoted protein synthesis, cell proliferation, mTOR phosphorylation, and also AT-rich interaction domain 4B (ARID4B) expression, with the best stimulatory effects at 120 μM. LY 294002 treatment showed that Tau promoted ARID4B expression in a PI3K-dependent manner. ARID4B knockdown (by siRNA transfection for 24 h) prevented Tau from stimulating protein synthesis and cell proliferation, whereas ARID4B gene activation (using the CRISPR/dCas9 technology) had stimulatory effects. ARID4B knockdown abolished Tau signaling to mRNA expression and protein phosphorylation of mTOR, whereas ARID4B gene activation had stimulatory effects. ChIP-PCR identified that all of ARID4B, H3K27ac and H3K27me3 bound to the -4368∼-4591 bp site in the mTOR promoter, and ChIP-qPCR further detected that Tau stimulated ARID4B binding to this site. ARID4B knockdown or gene activation did not affect H3K27me3 binding to the mTOR promoter, but decreased or increased H3K27ac binding, respectively. Furthermore, ARID4B knockdown abolished the stimulation of Tau on H3K27ac binding to the mTOR promoter. In summary, these data uncover that Tau promotes protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway, providing a deep understanding how Tau regulates anabolism in muscle cells.
    Keywords:  ARID4B; H3K27ac; PI3K; mTOR; myoblast cell; taurine
    DOI:  https://doi.org/10.1017/S0007114521004918
  31. Sports Med. 2021 Dec 08.
       BACKGROUND: Concurrent training can be an effective and time-efficient method to improve both muscle strength and aerobic capacity. A major challenge with concurrent training is how to adequately combine and sequence strength exercise and aerobic exercise to avoid interference effects. This is particularly relevant for athletes.
    OBJECTIVE: We aimed to examine the acute effects of aerobic exercise on subsequent measures of muscle strength and power in trained male individuals.
    DESIGN: We performed a systematic review with meta-analysis.
    DATA SOURCES: Systematic literature searches in the electronic databases PubMed, Web of Science, and Google Scholar were conducted up to July 2021.
    ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies were included that applied a within-group repeated-measures design and examined the acute effects of aerobic exercise (i.e., running, cycling exercise) on subsequent measures of lower limb muscle strength (e.g., maximal isometric force of the knee extensors) and/or proxies of lower limb muscle power (e.g., countermovement jump height) in trained individuals.
    RESULTS: Fifteen studies met the inclusion criteria. Aerobic exercise resulted in moderate declines in muscle strength (standardized mean difference [SMD] = 0.79; p = 0.003). Low-intensity aerobic exercise did not moderate effects on muscle strength (SMD = 0.65; p = 0.157) while moderate-to-high intensity aerobic exercise resulted in moderate declines in muscle strength (SMD = 0.65; p = 0.020). However, the difference between subgroups was not statistically significant (p = 0.979). Regarding aerobic exercise duration, large declines in muscle strength were found after > 30 min (SMD = 1.02; p = 0.049) while ≤ 30 min of aerobic exercise induced moderate declines in muscle strength (SMD = 0.59; p = 0.013). The subgroup difference was not statistically significant (p = 0.204). Cycling exercise resulted in significantly larger decrements in muscle strength (SMD = 0.79; p = 0.002) compared with running (SMD = 0.28; p = 0.035). The difference between subgroups was statistically significant (p < 0.0001). For muscle power, aerobic exercise did not result in any statistically significant changes (SMD = 0.04; p = 0.846).
    CONCLUSIONS: Aerobic exercise induced moderate declines in measures of muscle strength with no statistically significant effects on proxies of muscle power in trained male individuals. It appears that higher compared with lower intensity as well as longer compared with shorter aerobic exercise duration exacerbate acute declines in muscle strength. Our results provide evidence for acute interference effects when aerobic exercies is performed before strength exercises. These findings may help practitioners to better prescribe single training sessions, particularly if environmental and/or infrastructural reasons (e.g., availability of training facilities) do not allow the application of strength training before aerobic exercise.
    DOI:  https://doi.org/10.1007/s40279-021-01615-6
  32. Nat Commun. 2021 Dec 08. 12(1): 7128
      Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating myopathy caused by de-repression of the DUX4 gene in skeletal muscles. Effective therapies will likely involve DUX4 inhibition. RNA interference (RNAi) is one powerful approach to inhibit DUX4, and we previously described a RNAi gene therapy to achieve DUX4 silencing in FSHD cells and mice using engineered microRNAs. Here we report a strategy to direct RNAi against DUX4 using the natural microRNA miR-675, which is derived from the lncRNA H19. Human miR-675 inhibits DUX4 expression and associated outcomes in FSHD cell models. In addition, miR-675 delivery using gene therapy protects muscles from DUX4-associated death in mice. Finally, we show that three known miR-675-upregulating small molecules inhibit DUX4 and DUX4-activated FSHD biomarkers in FSHD patient-derived myotubes. To our knowledge, this is the first study demonstrating the use of small molecules to suppress a dominant disease gene using an RNAi mechanism.
    DOI:  https://doi.org/10.1038/s41467-021-27430-1
  33. Intractable Rare Dis Res. 2021 Nov;10(4): 269-275
      Duchenne muscular dystrophy (DMD) is a recessive hereditary myopathy due to deficiency of functional dystrophin. Current therapeutic interventions need more investigation to slow down the progression of skeletal and cardiac muscle weakness. In humans, there is a lack of an adapted training program. In animals, the murine Mdx model with a DBA/2J background (D2-mdx) was recently suggested to present pathological features closer to that of humans. In this study, we characterized skeletal and cardiac muscle functions in males and females D2-mdx mice compared to control groups. We also evaluated the impact of high intensity interval training (HIIT) in these muscles in females and males. HIIT was performed 5 times per week during a month on a motorized treadmill. Specific maximal isometric force production and weakness were measured in the tibialis anterior muscle (TA). Sedentary male and female D2-mdx mice produced lower absolute and specific maximal force compared to control mice. Dystrophic mice showed a decline of force generation during repetitive stimulation compared to controls. This reduction was greater for male D2-mdx mice than females. Furthermore, trained D2-mdx males showed an improvement in force generation after the fifth lengthening contraction compared to sedentary D2-mdx males. Moreover, echocardiography measures revealed a decrease in left ventricular end-diastolic volume, left ventricular ejection volume and left ventricular end-diastolic diameter in sedentary male and female D2-mdx mice. Overall, our results showed a serious muscle function alteration in female and male D2-mdx mice compared to controls. HIIT may delay force loss especially in male D2-mdx mice.
    Keywords:  HIIT; cardiac function; cardiomyopathy; force production; muscle function
    DOI:  https://doi.org/10.5582/irdr.2021.01097
  34. Sports Med. 2021 Dec 08.
       BACKGROUND: The 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established.
    OBJECTIVES: The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise.
    METHODS: Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [[Formula: see text]] 51.9 ± 7.8 mL kg-1 min-1). Pearson's correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation.
    RESULTS: Significant correlations (r = 0.19-0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity.
    CONCLUSION: Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.
    DOI:  https://doi.org/10.1007/s40279-021-01610-x
  35. Front Nutr. 2021 ;8 734267
      Background: The effect of physical activity and exercise on hunger and satiety has been well-studied in younger adults, but the influence of aging is less understood. While some evidence suggests that acute bouts of exercise induce a compensatory eating drive, long-term activity may improve satiety sensitivity. The objective of this study was to investigate the effects of exercise on appetite in older adults. Methods: We systematically reviewed available literature investigating the effect of exercise on appetite in older adults adults (CRD42020208953). PubMed, PsycINFO, Academic Search Complete, the Sports Medicine & Education Index, and Web of Science, were searched for peer-reviewed articles published in English with no date restriction. Included studies implemented a primary exercise or physical activity intervention with a control group, on a generally healthy population ≥60 years of age. Selected studies included at least one appetite outcome. Risk of bias was assessed using the 11-point Physiotherapy Evidence Database (PEDro) tool. Standardized mean difference summary statistics (Hedge's g effect sizes) and 95% confidence intervals were reported. Results: We identified 15 reports (13 studies) which met all inclusion criteria (5 resistance training, 3 aerobic, 6 mixed modalities). Studies included 443 participants (Age = 68.9 ± 5.2, 82.3% female) and had generally "good" bias scores (PEDro = 6.4 ± 0.88). Random effects meta-analyses revealed that the exercising group showed statistically significant reductions in glucose [SMD = -0.34 (95% CI: -0.67, -0.02), p < 0.05, PEDro =6.4 ± 0.45] and leptin [SMD = -0.92 (95% CI: -1.28, -0.57), p < 0.00001, PEDro = 6.2 ± 0.75]. Discussion: This systematic review revealed that exercise and physical activity may modulate resting hunger and satiety in older adults. Decreases in fasting leptin and glucose hormones suggest that exercise promotes satiety sensitivity in adults aged 60+. This review highlights that engaging in exercise and activity programs may provide a meaningful avenue for improving chronic and functional disease burden in later life by promoting appetite control and balanced energy intake. Recommendations for future research include investigations of appetite in response to varied exercise modalities within more diverse and representative samples of older adults.
    Keywords:  aging; appetite; exercise; leptin; satiety
    DOI:  https://doi.org/10.3389/fnut.2021.734267
  36. Front Genet. 2021 ;12 714228
      A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.
    Keywords:  PHB1; PHB2; age-related diseases; aging; prohibitin
    DOI:  https://doi.org/10.3389/fgene.2021.714228
  37. BMJ Open. 2021 Dec 06. 11(12): e052913
       INTRODUCTION: There is not a doubt that tailored exercise is an effective non-pharmacological approach for preventing, mitigating and even reversing ageing-related alterations. However, older adults are likely to experience prolonged periods of inactivity and training cessation periods as a consequence of falls or hospitalisation. Although recent evidence supports that exercise could have a protective effect and help in recovering, there is to date a lack of consensus about what kind of physical exercise prescription and training duration would produce better outcomes after training cessation periods. The current study will determine the effects that available exercise prescriptions produced in older adults in preserving physical conditioning following inactivity periods.
    METHODS AND ANALYSIS: A systematic search of the literature will be conducted in three databases, namely PubMed, Scopus and Web of Science, from inception to 1 February 2021. Only randomised controlled trials written in English or Spanish will be eligible. No year of publication restriction will be applied. Eligible studies will contain information on population (older adults over 60 years old), intervention (inactivity period, exercise programme their duration), comparator (treatment as usual or waiting list) and outcomes (strength, functional capacity, metabolic health and skeletal muscle structure). Two independent reviewers will (1) search, screen and select studies, (2) extract data about their main characteristics and (3) evaluate their methodological and reporting quality. When disagreements emerge, the reviewers will discuss to reach a consensus. We plan to conduct meta-analysis to quantitatively synthesise the effects under study.
    ETHICS AND DISSEMINATION: As systematic reviews use publicly available data, no formal ethical review and approval are needed. Findings will be published in a peer-reviewed journal(s) and presented at conferences.
    PROSPERO REGISTRATION NUMBER: CRD42021235092.
    Keywords:  geriatric medicine; preventive medicine; primary care; public health; sports medicine
    DOI:  https://doi.org/10.1136/bmjopen-2021-052913
  38. BMJ Open. 2021 Dec 08. 11(12): e048932
       INTRODUCTION: There are 3.9 million people in the UK with diabetes. Sarcopenia, increased frailty and loss of independence are often unappreciated complications of diabetes. Resistance exercise shows promise in reducing these complications in older adult diabetes patients. The aim of this feasibility randomised controlled trial is to (1) characterise the physical function, cardiovascular health and the health and well-being of older adults with mild frailty with/without diabetes treated with insulin, (2) to understand the feasibility and acceptability of a 4-week resistance exercise training programme in improving these parameters for those with diabetes and (3) to test the feasibility of recruiting and randomising the diabetic participant group to a trial of resistance training.
    METHODS AND ANALYSIS: Thirty adults aged ≥60 years with insulin-treated diabetes mellitus (type 1 or 2), and 30 without, all with mild frailty (3-4 on the Rockwood Frailty Scale) will be recruited. All will complete blood, cardiovascular and physical function testing. Only the diabetic group will then proceed into the trial itself. They will be randomised 1:1 to a 4-week semisupervised resistance training programme, designed to increase muscle mass and strength, or to usual care, defined as their regular physical activity, for 4 weeks. This group will then repeat testing. Primary outcomes include recruitment rate, attrition rate, intervention fidelity and acceptability, and adherence to the training programme. A subset of participants will be interviewed before and after the training programme to understand experiences of resistance training, impact on health and living with diabetes (where relevant) as they have aged. Analyses will include descriptive statistics and qualitative thematic analysis.
    ETHICS AND DISSEMINATION: The North East-Newcastle and North Tyneside 2 Research Ethics Committee (20/NE/0178) approved the study. Outputs will include feasibility data to support funding applications for a future definitive trial, conference and patient and public involvement presentations, and peer-reviewed publications.
    TRIAL REGISTRATION NUMBER: ISRCTN13193281.
    Keywords:  clinical trials; diabetes & endocrinology; geriatric medicine; sports medicine
    DOI:  https://doi.org/10.1136/bmjopen-2021-048932
  39. Muscle Nerve. 2021 Dec 10.
       INTRODUCTION/AIMS: Although macrophage accumulation plays a key role in the development of immobilization-induced muscle fibrosis, the underlying mechanisms remain unclear. Therefore, we focused on the alterations of myonuclear apoptosis via cleaved caspase-3, and investigated whether these changes may be related to macrophage accumulation.
    METHODS: Eight-week-old Wistar rats were divided into immobilization and control groups, and the soleus muscles were selected for analysis.
    RESULTS: The mRNA and protein expression of collagen and the number of CD11b-positive cells were significantly higher in the immobilized rats than in the control rats at 1 and 2 weeks. TdT-mediated dUTP nick end labeling (TUNEL)-positive myonuclei counts in 1- and 2-week control rats were 0.2±0.1 and 0.2±0.5, whereas they were 1.0±0.6 and 1.1±0.5 in 1- and 2-week immobilized rats. The cleaved caspase-3 protein expressions in 1- and 2-week control rats were 0.2±0.1 and 0.2±0.1, whereas they were 0.5±0.1 and 0.4±0.2 in 1- and 2-week immobilized rats. TUNEL-positive myonuclei counts and cleaved caspase-3 protein expression were significantly higher in immobilized rats than in control rats at 1 and 2 weeks. The numbers of myonuclei in 1- and 2-week control rats were 2.8±0.1 and 2.6±0.4, , whereas they were 2.2±0.4 and 2.2±0.2 in 1- and 2-week immobilized rats. The numbers of myonuclei were significantly lower in immobilized than in control rats at both time points.
    DISCUSSION: Myonuclear apoptosis via the upregulation of cleaved caspase-3 might induce macrophage accumulation. These alterations are related to immobilization-induced muscle fibrosis. This article is protected by copyright. All rights reserved.
    Keywords:  apoptosis; cleaved caspase-3; fibrosis; immobilization; macrophages
    DOI:  https://doi.org/10.1002/mus.27473