bims-moremu Biomed News
on Molecular regulators of muscle mass
Issue of 2022‒07‒31
48 papers selected by
Anna Vainshtein
Craft Science Inc.


  1. Front Cell Dev Biol. 2022 ;10 952249
      Skeletal muscle is essential to physical activity and energy metabolism. Maintaining intact functions of skeletal muscle is crucial to health and wellbeing. Evolutionarily, skeletal muscle has developed a remarkable capacity to maintain homeostasis and to regenerate after injury, which indispensably relies on the resident muscle stem cells, satellite cells. Satellite cells are largely quiescent in the homeostatic steady state. They are activated in response to muscle injury. Activated satellite cells proliferate and differentiate into myoblasts. Myoblasts fuse to form myotubes which further grow and differentiate into mature myofibers. This process is tightly regulated by muscle microenvironment that consists of multiple cellular and molecular components, including macrophages. Present in both homeostatic and injured muscles, macrophages contain heterogeneous functional subtypes that play diverse roles in maintaining homeostasis and promoting injury repair. The spatial-temporal presence of different functional subtypes of macrophages and their interactions with myogenic cells are vital to the proper regeneration of skeletal muscle after injury. However, this well-coordinated process is often disrupted in a chronic muscle disease, such as muscular dystrophy, leading to asynchronous activation and differentiation of satellite cells and aberrant muscle regeneration. Understanding the precise cellular and molecular processes regulating interactions between macrophages and myogenic cells is critical to the development of therapeutic manipulation of macrophages to promote injury repair. Here, we review the current knowledge of the many roles played by macrophages in the regulation of myogenic cells in homeostatic, regenerating, and dystrophic skeletal muscles.
    Keywords:  injury repair; macrophage; regeneration; satellite cells; skeletal muscle
    DOI:  https://doi.org/10.3389/fcell.2022.952249
  2. Cells. 2022 Jul 25. pii: 2291. [Epub ahead of print]11(15):
      Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
    Keywords:  Myoparr; cachexia; long non-coding RNA; sarcopenia; skeletal muscle atrophy
    DOI:  https://doi.org/10.3390/cells11152291
  3. Front Physiol. 2022 ;13 915390
      Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
    Keywords:  fibro/adipogenic progenitor cells; leucine; nutrition; satellite cells; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2022.915390
  4. Skelet Muscle. 2022 Jul 28. 12(1): 18
      BACKGROUND: Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle.METHODS: We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations.
    RESULTS: Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models.
    CONCLUSIONS: Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.
    Keywords:  Atrophy; Denervation; Fn14; Glucose metabolism; Skeletal muscle; Smn; Spinal muscular atrophy; Survival motor neuron; Tweak
    DOI:  https://doi.org/10.1186/s13395-022-00301-z
  5. Purinergic Signal. 2022 Jul 29.
      Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.
    Keywords:  ERK1/2; MuSCs; Muscle regeneration; P2Y1; P2Y2; p38-MAPK
    DOI:  https://doi.org/10.1007/s11302-022-09885-z
  6. Am J Physiol Cell Physiol. 2022 Jul 25.
      Multinuclear muscle fibers are the most voluminous cells in skeletal muscle and the primary drivers of growth in response to loading. Outside the muscle fiber, however, is a diversity of mononuclear cell types that reside in the extracellular matrix (ECM). These muscle-resident cells are exercise-responsive and produce the scaffolding for successful myofbrillar growth. Without proper remodeling and maintenance of this ECM scaffolding, the ability to mount an appropriate response to resistance training in adult muscle is severely hindered. Complex cellular choreography takes place in muscle following a loading stimulus. These interactions have been recently revealed by single-cell explorations into muscle adaptation with loading. The intricate ballet of ECM remodeling involves collagen production from fibrogenic cells and ECM modifying signals initiated by satellite cells, immune cells, and the muscle fibers themselves. The acellular collagen-rich ECM is also a mechanical signal-transducer and rich repository of growth factors that may directly influence muscle fiber hypertrophy once liberated. Collectively, high levels of collagen expression, deposition, and turnover characterizes a well-trained muscle phenotype. The purpose of this review is to highlight the most recent evidence for how the ECM and its cellular components affect loading-induced muscle hypertrophy. We also address how the muscle fiber may directly take part in ECM remodeling, and whether ECM dynamics are rate-limiting for muscle fiber growth.
    Keywords:  FAPs; collagen; mechanical overload; satellite cells; skeletal muscle
    DOI:  https://doi.org/10.1152/ajpcell.00200.2022
  7. Mol Metab. 2022 Jul 21. pii: S2212-8778(22)00124-7. [Epub ahead of print] 101555
      OBJECTIVE: Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle.METHODS: We used transcriptomic, methylproteomic, molecular, functional, and integrative physiological approaches to determine the specific impact of CARM1 in muscle homeostasis.
    RESULTS: Our data defines the occurrence of arginine methylation in skeletal muscle and demonstrates that this mark occurs on par with phosphorylation and ubiquitination. CARM1 skeletal muscle-specific knockout (mKO) mice displayed altered transcriptomic and arginine methylproteomic signatures with molecular and functional outcomes confirming remodeled skeletal muscle contractile and neuromuscular junction characteristics, which presaged decreased exercise tolerance. Moreover, CARM1 regulates AMPK-PGC-1α signalling during acute conditions of activity-induced muscle plasticity.
    CONCLUSIONS: This study uncovers the broad impact of CARM1 in the maintenance and remodelling of skeletal muscle biology.
    Keywords:  AMPK; PGC-1α; mitochondria; muscle plasticity; neuromuscular junction
    DOI:  https://doi.org/10.1016/j.molmet.2022.101555
  8. Int J Mol Sci. 2022 Jul 06. pii: 7489. [Epub ahead of print]23(14):
      This Special Issue presents some of the most recent studies on the skeletal muscle denervation [...].
    DOI:  https://doi.org/10.3390/ijms23147489
  9. Int J Mol Sci. 2022 Jul 08. pii: 7579. [Epub ahead of print]23(14):
      Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.
    Keywords:  Duchenne muscular dystrophy; mdx; satellite cells; sphingosine phosphate lyase; sphingosine-1-phosphate
    DOI:  https://doi.org/10.3390/ijms23147579
  10. Int J Mol Sci. 2022 Jul 23. pii: 8113. [Epub ahead of print]23(15):
      Nemaline myopathy (NM) is characterized by skeletal muscle weakness and atrophy. No curative treatments exist for this debilitating disease. NM is caused by mutations in proteins involved in thin-filament function, turnover, and maintenance. Mutations in nebulin, encoded by NEB, are the most common cause. Skeletal muscle atrophy is tightly linked to upregulation of MuRF1, an E3 ligase, that targets proteins for proteasome degradation. Here, we report a large increase in MuRF1 protein levels in both patients with nebulin-based NM, also named NEM2, and in mouse models of the disease. We hypothesized that knocking out MuRF1 in animal models of NM with muscle atrophy would ameliorate the muscle deficits. To test this, we crossed MuRF1 KO mice with two NEM2 mouse models, one with the typical form and the other with the severe form. The crosses were viable, and muscles were studied in mice at 3 months of life. Ultrastructural examination of gastrocnemius muscle lacking MuRF1 and with severe NM revealed a small increase in vacuoles, but no significant change in the myofibrillar fractional area. MuRF1 deficiency led to increased weights of various muscle types in the NM models. However, this increase in muscle size was not associated with increased in vivo or in vitro force production. We conclude that knocking out MuRF1 in NEM2 mice increases muscle size, but does not improve muscle function.
    Keywords:  MuRF1; NEM2 and MAFbx; muscle atrophy; nebulin; nemaline myopathy
    DOI:  https://doi.org/10.3390/ijms23158113
  11. J Cachexia Sarcopenia Muscle. 2022 Jul 28.
      BACKGROUND: Chemotherapy induces a cachectic-like phenotype, accompanied by skeletal muscle wasting, weakness and mitochondrial dysfunction. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α), a regulator of mitochondrial biogenesis, is often reduced in cachectic skeletal muscle. Overexpression of PGC1α has yielded mixed beneficial results in cancer cachexia, yet investigations using such approach in a chemotherapy setting are limited. Utilizing transgenic mice, we assessed whether overexpression of PGC1α could combat the skeletal muscle consequences of cisplatin.METHODS: Young (2 month) and old (18 month) wild-type (WT) and PGC1α transgenic male and female mice (Tg) were injected with cisplatin (C; 2.5 mg/kg) for 2 weeks, while control animals received saline (n = 5-9/group). Animals were assessed for muscle mass and force, motor unit connectivity, and expression of mitochondrial proteins.
    RESULTS: Young WT + C mice displayed reduced gastrocnemius mass (male: -16%, P < 0.0001; female: -11%, P < 0.001), muscle force (-6%, P < 0.05, both sexes), and motor unit number estimation (MUNE; male: -53%, P < 0.01; female: -51%, P < 0.01). Old WT + C male and female mice exhibited gastrocnemius wasting (male: -22%, P < 0.05; female: -27%, P < 0.05), muscle weakness (male: -20%, P < 0.0001; female: -17%, P < 0.01), and loss of MUNE (male: -82%, P < 0.01; female: -62%, P < 0.05), suggesting exacerbated cachexia compared with younger animals. Overexpression of PGC1α had mild protective effects on muscle mass in young Tg + C male only (gastrocnemius: +10%, P < 0.05); however, force and MUNE were unchanged in both young Tg + C male and female, suggesting preservation of neuromuscular function. In older male, protective effects associated with PGC1α overexpression were heighted with Tg + C demonstrating preserved muscle mass (gastrocnemius: +34%, P < 0.001), muscle force (+13%, P < 0.01), and MUNE (+3-fold, P < 0.05). Similarly, old female Tg + C did not exhibit muscle wasting or reductions in MUNE, and had preserved muscle force (+11%, P < 0.05) compared with female WT + C. Follow-up molecular analysis demonstrated that aged WT animals were more susceptible to cisplatin-induced loss of mitochondrial proteins, including PGC1α, OPA1, cytochrome-C, and Cox IV.
    CONCLUSIONS: In our study, the negative effects of cisplatin were heighted in aged animals, whereas overexpression of PGC1α was sufficient to combat the neuromuscular dysfunction caused by cisplatin, especially in older animals. Hence, our observations indicate that aged animals may be more susceptible to develop chemotherapy side toxicities and that mitochondria-targeted strategies may serve as a tool to prevent chemotherapy-induced muscle wasting and weakness.
    Keywords:  Chemotherapy; Cisplatin; PGC1α; Skeletal muscle; cachexia
    DOI:  https://doi.org/10.1002/jcsm.13035
  12. PLoS One. 2022 ;17(7): e0272231
      Arecoline is known to induce reactive oxygen species (ROS). Our previous studies showed that arecoline inhibited myogenic differentiation and acetylcholine receptor cluster formation of C2C12 myoblasts. N-acetyl-cysteine (NAC) is a known ROS scavenger. We hypothesize that NAC scavenges the excess ROS caused by arecoline. In this article we examined the effect of NAC on the inhibited myoblast differentiation by arecoline and related mechanisms. We found that NAC less than 2 mM is non-cytotoxic to C2C12 by viability analysis. We further demonstrated that NAC attenuated the decreased number of myotubes and nuclei in each myotube compared to arecoline treatment by H & E staining. We also showed that NAC prevented the decreased expression level of the myogenic markers, myogenin and MYH caused by arecoline, using immunocytochemistry and western blotting. Finally, we found that NAC restored the decreased expression level of p-ERK1/2 by arecoline. In conclusion, our results indicate that NAC attenuates the damage of the arecoline-inhibited C2C12 myoblast differentiation by the activation/phosphorylation of ERK. This is the first report to demonstrate that NAC has beneficial effects on skeletal muscle myogenesis through ERK1/2 upon arecoline treatment. Since defects of skeletal muscle associates with several diseases, NAC can be a potent drug candidate in diseases related to defects in skeletal muscle myogenesis.
    DOI:  https://doi.org/10.1371/journal.pone.0272231
  13. J Appl Physiol (1985). 2022 Jul 28.
      Over the last decades, a growing interest in eccentric (ECC) exercise has emerged, but mitochondrial adaptations to ECC training remain poorly documented. Using an approach for manipulating mechanical and metabolic exercise power, we positioned that for same metabolic power, training using concentric (CON) or ECC contractions would induce similar skeletal muscle mitochondrial adaptations. Sixty adult rats were randomly assigned to a control (CTRL) or three treadmill training groups running at 15m·min-1 for 45min, 5days weekly for 8 weeks at targeted upward or downward slopes. Animals from the CON (+15%) and ECC30 (-30%) groups trained at iso-metabolic power while CON and ECC15 (-15%) exercised at iso-mechanical power. Assessments were made of Vastus Intermedius mitochondrial respiration (oxygraphy), enzymatic activities (spectrophotometry) and real-time qPCR for mRNA transcripts. Maximal rates of mitochondrial respiration was 14-15% higher in CON and ECC30 compared to CTRL and ECC15. Apparent Km for ADP for trained groups was 40-66% higher than CTRL, with statistical significance reached for CON and ECC30. Complex I and citrate synthase activities were 1.6 (ECC15) to 1.8 (ECC30 and CON) times values of CTRL. Complex IV activity was higher than CTRL (p<0.05) only for CON and ECC30. mRNA transcripts analyses showed higher TFAM, SLC25A4, CKMT2 and PPID in the ECC30 compared to CTRL. Findings confirm that training-induced skeletal muscle mitochondrial function adaptations are governed by the extent of metabolic overload irrespective of exercise modality. The distinctive ECC30 mRNA transcript pattern may reflect a cytoskeleton damage-repair or ECC adaptive cycle that differs from that of biogenesis.
    Keywords:  aerobic training; eccentric exercise; gene expression; mitochondrial function; skeletal muscle
    DOI:  https://doi.org/10.1152/japplphysiol.00719.2021
  14. Sci Rep. 2022 Jul 29. 12(1): 13020
      Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/β-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.
    DOI:  https://doi.org/10.1038/s41598-022-16640-2
  15. Int J Mol Sci. 2022 Jul 09. pii: 7602. [Epub ahead of print]23(14):
      The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
    Keywords:  E3 ubiquitin ligase; healthspan; protein degradation; proteostasis; sarcopenia
    DOI:  https://doi.org/10.3390/ijms23147602
  16. Int J Mol Sci. 2022 Jul 24. pii: 8148. [Epub ahead of print]23(15):
      Tetrandrine is well known to act as a calcium channel blocker. It is a potential candidate for a tumor chemotherapy drug without toxicity. Tetrandrine inhibits cancer cell proliferation and induces cell death through apoptosis and autophagy. As cancer patients usually experience complications with sarcopenia or muscle injury, we thus assessed the effects of tetrandrine on skeletal muscle cells. We report in this study that a low dose of tetrandrine (less than 5 μM) does not affect the proliferation of C2C12 myoblasts, but significantly inhibits myogenic differentiation. Consistently, tetrandrine inhibited muscle regeneration after BaCl2-induced injury. Mechanistic experiments showed that tetrandrine decreased the p-mTOR level and increased the levels of LC3 and SQSTM1/p62 during differentiation. Ad-mRFP-GFP-LC3B transfection experiments revealed that the lysosomal quenching of GFP signals was suppressed by tetrandrine. Furthermore, the levels of DNM1L/Drp1, PPARGA1 and cytochrome C (Cyto C), as well as caspase 3 activation and ROS production, were decreased following tetrandrine administration, indicating that the mitochondrial network signaling was inhibited. Our results indicate that tetrandrine has dual effects on autophagic flux in myoblasts during differentiation, activation in the early stage and blockade in the late stage. The ultimate blocking of autophagic flux by tetrandrine led to the disruption of mitochondria remodeling and inhibition of myogenic differentiation. The inhibitory effects of tetrandrine on skeletal muscle differentiation may limit its application in advanced cancer patients. Thus, great attention should be paid to the clinical use of tetrandrine for cancer therapy.
    Keywords:  autophagy; mitochondria; myoblast; myogenic differentiation; tetrandrine
    DOI:  https://doi.org/10.3390/ijms23158148
  17. Metabolites. 2022 Jul 01. pii: 612. [Epub ahead of print]12(7):
      The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.
    Keywords:  FAPs; deiodinases; muscle injury; skeletal muscle; thyroid hormone
    DOI:  https://doi.org/10.3390/metabo12070612
  18. Front Cell Dev Biol. 2022 ;10 940622
      The knowledge of the molecular mechanisms that regulate embryonic myogenesis from early myogenic progenitors to myoblasts, as well as the emergence of adult satellite stem cells (SCs) during development, are key concepts to understanding the genesis and regenerative abilities of the skeletal muscle. Several previous pieces of evidence have revealed that the transcription factor Pitx2 might be a player within the molecular pathways controlling somite-derived muscle progenitors' fate and SC behavior. However, the role exerted by Pitx2 in the progression from myogenic progenitors to myoblasts including SC precursors remains unsolved. Here, we show that Pitx2 inactivation in uncommitted early myogenic precursors diminished cell proliferation and migration leading to muscle hypotrophy and a low number of SCs with decreased myogenic differentiation potential. However, the loss of Pitx2 in committed myogenic precursors gave rise to normal muscles with standard amounts of SCs exhibiting high levels of Pax7 expression. This SC population includes few MYF5+ SC-primed but increased amount of less proliferative miR-106b+cells, and display myogenic differentiation defects failing to undergo proper muscle regeneration. Overall our results demonstrate that Pitx2 is required in uncommitted myogenic progenitors but it is dispensable in committed precursors for proper myogenesis and reveal a role for this transcription factor in the generation of diverse SC subpopulations.
    Keywords:  Pitx2; myogenesis; myogenic precursors; satellite cells; somites
    DOI:  https://doi.org/10.3389/fcell.2022.940622
  19. Metabolites. 2022 Jul 18. pii: 663. [Epub ahead of print]12(7):
      Sarcopenia is defined as the loss of muscle mass associated with reduced strength leading to poor quality of life in elderly people. The decline of skeletal muscle performance is characterized by bioenergetic impairment and severe oxidative stress, and does not always strictly correlate with muscle mass loss. We chose to investigate the ability of the metabolic modulator Ranolazine to counteract skeletal muscle dysfunctions that occur with aging. For this purpose, we treated aged C57BL/6 mice with Ranolazine/vehicle for 14 days and collected the tibialis anterior and gastrocnemius muscles for histological and gene expression analyses, respectively. We found that Ranolazine treatment significantly increased the muscle strength of aged mice. At the histological level, we found an increase in centrally nucleated fibers associated with an up-regulation of genes encoding MyoD, Periostin and Osteopontin, thus suggesting a remodeling of the muscle even in the absence of physical exercise. Notably, these beneficial effects of Ranolazine were also accompanied by an up-regulation of antioxidant and mitochondrial genes as well as of NADH-dehydrogenase activity, together with a more efficient protection from oxidative damage in the skeletal muscle. These data indicate that the protection of muscle from oxidative stress by Ranolazine might represent a valuable approach to increase skeletal muscle strength in elderly populations.
    Keywords:  aging; metabolic reprogramming; ranolazine; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.3390/metabo12070663
  20. Life (Basel). 2022 Jun 21. pii: 926. [Epub ahead of print]12(7):
      Integrin proteins are important receptors connecting the intracellular skeleton of satellite cells and the extracellular matrix (ECM), playing an important role in the process of skeletal muscle development. In this research, the function of ITGβ6 in regulating the differentiation of satellite cells was studied. Transcriptome and proteome analysis indicated that Itgβ6 is a key node connecting ECM-related proteins to the cytoskeleton, and it is necessary for the integrity of the membrane structure and stability of the cytoskeletal system, which are essential for satellite cell adhesion. Functional analysis revealed that the ITGβ6 protein could affect the myogenic differentiation potential of satellite cells by regulating the expression of PAX7 protein, thus regulating the formation of myotubes. Moreover, ITGβ6 is involved in muscle development by regulating cell-adhesion-related proteins, such as β-laminin, and cytoskeletal proteins such as PXN, DMD, and VCL. In conclusion, the effect of ITGβ6 on satellite cell differentiation mainly occurs before the initiation of differentiation, and it regulates terminal differentiation by affecting satellite cell characteristics, cell adhesion, and the stability of the cytoskeleton system.
    Keywords:  ITGβ6; cell adhesion; cell differentiation; cytoskeleton system; satellite cell; skeletal muscle
    DOI:  https://doi.org/10.3390/life12070926
  21. Front Physiol. 2022 ;13 934714
      The brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which is generated mainly by the brain. Its main role involve synaptic modulation, neurogenesis, neuron survival, immune regulation, myocardial contraction, and angiogenesis in the brain. Together with the encephalon, some peripheral tissues synthesize BDNF like skeletal muscle. On this tissue, this neurotrophin participates on cellular mechanisms related to muscle function maintenance and plasticity as reported on recent scientific works. Moreover, during exercise stimuli the BDNF contributes directly to strengthening neuromuscular junctions, muscle regeneration, insulin-regulated glucose uptake and β-oxidation processes in muscle tissue. Given its vital relevance on many physiological mechanisms, the current mini-review focuses on discussing up-to-date knowledge about BDNF production in skeletal muscle and how this neurotrophin impacts skeletal muscle biology.
    Keywords:  BDNF; exercise; myokine; neurotrophin; physical activity; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2022.934714
  22. Skelet Muscle. 2022 Jul 29. 12(1): 19
      BACKGROUND: Progerin elevates atrophic gene expression and helps modify the nuclear membrane to cause severe muscle pathology, which is similar to muscle weakness in the elderly, to alter the development and function of the skeletal muscles. Stress-induced premature senescence (SIPS), a state of cell growth arrest owing to such stimuli as oxidation, can be caused by progerin. However, evidence for whether SIPS-induced progerin accumulation is connected to denervation-induced muscle atrophy is not sufficient.METHODS: Flow cytometry and a reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) inhibitors were used to assess the effect of oxidation on protein (p53), progerin, and nuclear progerin-p53 interaction in the denervated muscles of models of mice suffering from sciatic injury. Loss-of-function approach with the targeted deletion of p53 was used to assess connection among SIPS, denervated muscle atrophy, and fibrogenesis.
    RESULTS: The augmentation of ROS and iNOS-derived NO in the denervated muscles of models of mice suffering from sciatic injury upregulates p53 and progerin. The abnormal accumulation of progerin in the nuclear membrane as well as the activation of nuclear progerin-p53 interaction triggered premature senescence in the denervated muscle cells of mice. The p53-dependent SIPS in denervated muscles contributes to their atrophy and fibrogenesis.
    CONCLUSION: Oxidative stress-triggered premature senescence via nuclear progerin-p53 interaction that promotes denervated skeletal muscular atrophy and fibrogenesis.
    Keywords:  Denervated muscle atrophy; NO; P53; Progerin; ROS
    DOI:  https://doi.org/10.1186/s13395-022-00302-y
  23. Cells. 2022 Jul 25. pii: 2293. [Epub ahead of print]11(15):
      Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
    Keywords:  cachexia; epigenetics; extracellular vesicles; miRNAs; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.3390/cells11152293
  24. Front Physiol. 2022 ;13 928195
      Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.e. 2 ms, 10 V, and 0.1 Hz for 24 h), whereas myotubes from middle-aged women and men were exposed to protocol 2 (i.e. 2 ms, 30 V, and 1 Hz for 48 h). Fuel handling as well as the transcriptome, cellular proteome, and secreted proteins of EPS-treated myotubes from young male subjects were analyzed using a combination of high-throughput RNA sequencing, high-resolution liquid chromatography-tandem mass spectrometry, oxidation assay, and immunoblotting. The data showed that oxidative metabolism was enhanced in EPS-exposed myotubes from young male subjects. Moreover, a total of 81 differentially regulated proteins and 952 differentially expressed genes (DEGs) were observed in these cells after EPS protocol 1. We also found 61 overlapping genes while comparing the DEGs to mRNA expression in myotubes from the middle-aged group exposed to protocol 2, assessed by microarray. Gene ontology (GO) analysis indicated that significantly regulated proteins and genes were enriched in biological processes related to glycolytic pathways, positive regulation of fatty acid oxidation, and oxidative phosphorylation, as well as muscle contraction, autophagy/mitophagy, and oxidative stress. Additionally, proteomic identification of secreted proteins revealed extracellular levels of 137 proteins were changed in myotubes from young male subjects exposed to EPS protocol 1. Selected putative myokines were measured using ELISA or multiplex assay to validate the results. Collectively, our data provides new insight into the transcriptome, proteome and secreted proteins alterations following in vitro exercise and is a valuable resource for understanding the molecular mechanisms and regulatory molecules mediating the beneficial metabolic effects of exercise.
    Keywords:  energy metabolism; exercise; myokines; omics; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2022.928195
  25. EMBO J. 2022 Jul 28. e111650
      Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.
    Keywords:  ZAKβ; mechanobiology; muscle contraction; myopathy
    DOI:  https://doi.org/10.15252/embj.2022111650
  26. J Cell Mol Med. 2022 Jul 27.
      Homeostasis in skeletal muscle is sustained by the balance of functional and physical interactions between muscle and myofibre microenvironment. Various factors, such as ageing, disuse and denervation, tip the balance and induce skeletal muscle atrophy. Skeletal muscle atrophy, which involves complex physiological and biochemical changes, is accompanied by adverse outcomes and even increased mortality. Multiple studies have investigated the role of neutrophils in atrophied skeletal muscles; however, neutrophil intrusion in muscle is still a polemical knot. As technical obstacles have been overcome, people have gradually discovered new functions of neutrophils. The classical view of neutrophils is no longer applicable to their biological characteristics. To date, no clear association between the hidden injurious effect of neutrophil intrusion and muscle atrophy has been convincingly proven. Throughout this review, we have discussed the neutrophil activities that mediate muscle atrophy for distinct disease occurrences. Hopefully, this review will help both clinicians and researchers of skeletal muscle atrophy with relevant targets to further explore efficient medical interventions and treatments.
    Keywords:  Neutrophils; atrophy; immune microenvironment; skeletal muscle
    DOI:  https://doi.org/10.1111/jcmm.17495
  27. Int J Mol Sci. 2022 Jul 07. pii: 7515. [Epub ahead of print]23(14):
      Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor β (TGFβ) signaling. In this report, we investigated the major transducers of TGFβ signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.
    Keywords:  BMP4; Duchenne; Smad8; miRNA; muscle
    DOI:  https://doi.org/10.3390/ijms23147515
  28. Cell Metab. 2022 Jul 19. pii: S1550-4131(22)00302-3. [Epub ahead of print]
      Exercise induces signaling networks to improve muscle function and confer health benefits. To identify divergent and common signaling networks during and after different exercise modalities, we performed a phosphoproteomic analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise. This identified 5,486 phosphosites regulated during or after at least one type of exercise modality and only 420 core phosphosites common to all exercise. One of these core phosphosites was S67 on the uncharacterized protein C18ORF25, which we validated as an AMPK substrate. Mice lacking C18ORF25 have reduced skeletal muscle fiber size, exercise capacity, and muscle contractile function, and this was associated with reduced phosphorylation of contractile and Ca2+ handling proteins. Expression of C18ORF25 S66/67D phospho-mimetic reversed the decreased muscle force production. This work defines the divergent and canonical exercise phosphoproteome across different modalities and identifies C18ORF25 as a regulator of exercise signaling and muscle function.
    Keywords:  AMPK; C18ORF25; exercise; phosphoproteomics; signaling; skeletal muscle
    DOI:  https://doi.org/10.1016/j.cmet.2022.07.003
  29. Sci Adv. 2022 Jul 29. 8(30): eabm7355
      Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.
    DOI:  https://doi.org/10.1126/sciadv.abm7355
  30. Proteomics. 2022 Jul 28. e2200003
      The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterized by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article gives an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy. Significance Statement: This review highlights the important contribution of abnormal calcium handling and impaired excitation-contraction coupling in Duchenne muscular dystrophy, a neuromuscular disorder that is triggered by the disintegration of the dystrophin-glycoprotein complex. The article highlights the findings from mass spectrometry-based proteomic studies of dystrophin-deficient skeletal muscles and discusses the pathophysiological consequences of alterations in the abundance and function of key calcium-regulatory proteins. This article is protected by copyright. All rights reserved.
    Keywords:  calcium homeostasis; dihydropyridine receptor; dystrophin; dystrophinopathy; ryanodine receptor; triad
    DOI:  https://doi.org/10.1002/pmic.202200003
  31. Anim Biotechnol. 2022 Jul 23. 1-13
      MiR-424-5p was found to be a potential regulator in the proliferation, migration, and invasion of various cancer cells. However, the effects and functional mechanism of miR-424-5p in the process of myogenesis are still unclear. Previously, using microRNA (miRNA) sequencing and expression analysis, we discovered that miR-424-5p was expressed differentially in the different skeletal muscle growth periods of Xuhuai goats. We hypothesized that miR-424-5p might play an important role in skeletal muscle myogenesis. Then, we found that the proliferation ability of the mouse myoblast cell (C2C12 myoblast cell line) was significantly augmented, whereas the C2C12 differentiation was repressed after increasing the expression of miR-424-5p. Mechanistically, HSP90AA1 presented a close interrelation with miR-424-5p, which was predicted as a target gene in the progression of skeletal muscle myogenesis, using transcriptome sequencing, dual luciferase reporter gene detection, and qRT-PCR. The silencing of HSP90AA1 obviously increased C2C12 proliferation and diminished differentiation, which is consistent with the ability of miR-424-5p in C2C12. Altogether, our findings indicated the role of miR-424-5p as a novel potential regulator via HSP90AA1 during muscle myogenesis progression.
    Keywords:  C2C12 myoblasts; HSP90AA1; differentiation; miR-424-5p; proliferation
    DOI:  https://doi.org/10.1080/10495398.2022.2102032
  32. Cell Rep. 2022 Jul 26. pii: S2211-1247(22)00937-8. [Epub ahead of print]40(4): 111131
      Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.
    Keywords:  CP: Metabolism; CP: Neuroscience; NAD(+); NMN transporter; PDK4; Slc12a8; aging; frailty; lateral hypothalamus; sarcopenia; skeletal muscle; β2-adrenergic receptor
    DOI:  https://doi.org/10.1016/j.celrep.2022.111131
  33. J Exp Biol. 2022 Jul 25. pii: jeb.243584. [Epub ahead of print]
      Evidence suggests that the giant muscle protein, titin functions as a tunable spring in active muscle. However, the mechanisms for increasing titin stiffness with activation are not well understood. Previous studies have suggested that during muscle activation, titin binds to actin which engages the PEVK region of titin thereby increasing titin stiffness. In this study, we investigated the role of PEVK titin in active muscle stiffness during rapid unloading. We measured elastic recoil of active and passive soleus muscles from TtnD112-158 mice characterized by a 75% deletion of PEVK titin and increased passive stiffness. We hypothesized that activated TtnD112-158 muscles are more stiff than wild type muscles due to the increased stiffness of PEVK titin. Using a servomotor force lever, we compared the stress-strain relationships of elastic elements in active and passive muscles during rapid unloading and quantified the change in stiffness upon activation. Results show that the elastic modulus of TtnD112-158 muscles increased with activation. However, elastic elements developed force at 7% longer lengths and exhibited 50% lower active stiffness in TtnD112-158 soleus muscles than wild type muscles. Thus, despite having a shorter, stiffer PEVK segment, during rapid unloading, TtnD112-158 soleus muscles exhibited reduced active stiffness compared to wild type soleus muscles. These results are consistent with the idea that PEVK titin contributes to active muscle stiffness, however, the reduction in active stiffness of TtnD112-158 muscles suggests that other mechanisms compensate for the increased PEVK stiffness.
    Keywords:  Activation; Elastic recoil; Muscle; Stiffness; Titin
    DOI:  https://doi.org/10.1242/jeb.243584
  34. Biochem Biophys Res Commun. 2022 Jul 19. pii: S0006-291X(22)01037-3. [Epub ahead of print]623 89-95
      Neurogranin (Ng) is a calmodulin (CaM) binding protein that negatively regulates calcineurin - a Ca2+/CaM-dependent phosphatase that can mitigate the slow-to-fast fibre type shift observed with muscle unloading. Here, we questioned whether heterozygous deletion of Ng (Ng+/-) would enhance calcineurin activity, thereby minimizing the slow-to-fast fibre type shift caused by muscle unloading. As expected, soleus muscles from young adult (3-4 months old) Ng± mice had lowered Ng content and enhanced calcineurin activity when compared to soleus muscles obtained from male age-matched wild-type (WT) mice. Two weeks after tenotomy surgery, where the soleus and gastrocnemius tendons were severed, soleus total fibre count were found to be similarly reduced across both genotypes. However, significant reductions in myofibre cross-sectional area were only found in WT mice and not Ng± mice. Furthermore, while soleus muscles from both WT and Ng± mice exhibited a slow-to-fast fibre type shift with tenotomy, soleus muscles from Ng± mice, in both sham and tenotomized conditions, had a greater proportion of oxidative fibres (type I and IIA) compared with that of WT mice. Corresponding well with this, we found that soleus muscles from Ng± mice were more fatigue resistant compared with those obtained from their WT counterparts. Collectively, these findings show that heterozygous Ng deletion increases calcineurin activation, preserves myofibre size in response to unloading, and promotes the oxidative fibre type to ultimately enhance fatigue resistance. This study demonstrates the role of Ng in regulating calcineurin in vivo and its influence on skeletal muscle form and function.
    Keywords:  Calcineurin; Calmodulin; NFAT; Oxidative fibre; Unloading
    DOI:  https://doi.org/10.1016/j.bbrc.2022.07.062
  35. Front Genet. 2022 ;13 860815
      Background: Acute sprint exercise is a time-efficient physical activity that improves cardiorespiratory fitness in younger and middle-aged adults. Growing evidence has demonstrated that acute sprint exercise provides equal to or superior health benefits compared with moderate-intensity continuous training, which will dramatically increase aerobic capacity, insulin sensitivity, and muscle capillarization. Although the beneficial effects of acute sprint exercise are well documented, the mechanisms behind how acute sprint exercise prevents disease and benefits health are less understood. Method: We obtained differentially expressed genes in muscle (vastus lateralis) from men and women before and after an acute sprint exercise. Then, we identified hub genes from the protein-protein interaction (PPI) network of differentially expressed genes (DEGs) and key transcription factors in men and women related to acute sprint exercise. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses are performed on DEGs and sex-biased genes, respectively. Results: First, we identified 127 sexually dimorphic genes in men (90 upregulated and 37 downregulated) and 75 genes in women (90 upregulated and 37 downregulated) in response to acute sprint exercise. Second, CEBPB, SMAD3, and CDKN1A are identified as the top three hub genes related to men-biased genes. Accordingly, the top three hub genes related to women-biased genes are JUN, ACTB, and SMAD7. In addition, CLOCK, ZNF217, and KDM2B are the top three enriched transcriptional factors in men-biased genes, while XLR, SOX2, JUND, and KLF4 are transcription factors enriched most in women-biased genes. Furthermore, based on GO and KEGG enrichment analyses, we identified potential key pathways in regulating the exercise-related response in men and women, respectively. Conclusion: In this study, we found the difference in gene expression and enrichment pathways in muscle in men and women in response to acute sprint exercise. These results will shed new light on the mechanism underlying sex-based differences in skeletal muscle remodeling and metabolism related to acute sprint exercise, which may illustrate the mechanisms behind how acute sprint exercise prevents disease and benefits health.
    Keywords:  KEGG; acute sprint exercise; hub genes; muscle; sex-biased genes
    DOI:  https://doi.org/10.3389/fgene.2022.860815
  36. Sports Med. 2022 Jul 30.
      Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
    DOI:  https://doi.org/10.1007/s40279-022-01733-9
  37. J Cell Mol Med. 2022 Jul 26.
      Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle-specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age-matched healthy controls. We found a significant upregulation of serum miR-1, miR-133a, miR-133b and miR-206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut-off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR-133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR-133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.
    Keywords:  BMD; Becker muscular dystrophy; biomarkers; miR-133b; miRNA; serum; skeletal muscle
    DOI:  https://doi.org/10.1111/jcmm.17462
  38. Nutrients. 2022 Jul 14. pii: 2894. [Epub ahead of print]14(14):
      Sarcopenia refers to a decline in muscle mass and strength with age, causing significant impairment in the ability to carry out normal daily functions and increased risk of falls and fractures, eventually leading to loss of independence. Maintaining protein homeostasis is an important factor in preventing muscle loss, and the decrease in muscle mass is caused by an imbalance between anabolism and catabolism of muscle proteins. Although β-sitosterol has various effects such as anti-inflammatory, protective effect against nonalcoholic fatty liver disease (NAFLD), antioxidant, and antidiabetic activity, the mechanism of β-sitosterol effect on the catabolic pathway was not well known. β-sitosterol was assessed in vitro and in vivo using a dexamethasone-induced muscle atrophy mice model and C2C12 myoblasts. β-sitosterol protected mice from dexamethasone-induced muscle mass loss. The thickness of gastrocnemius muscle myofibers was increased in dexamethasone with the β-sitosterol treatment group (DS). Grip strength and creatine kinase (CK) activity were also recovered when β-sitosterol was treated. The muscle loss inhibitory efficacy of β-sitosterol in dexamethasone-induced muscle atrophy in C2C12 myotube was also verified in C2C12 myoblast. β-sitosterol also recovered the width of myotubes. The protein expression of muscle atrophy F-box (MAFbx) was increased in dexamethasone-treated animal models and C2C12 myoblast, but it was reduced when β-sitosterol was treated. MuRF1 also showed similar results to MAFbx in the mRNA level of C2C12 myotubes. In addition, in the gastrocnemius and tibialis anterior muscles of mouse models, Forkhead Box O1 (FoxO1) protein was increased in the dexamethasone-treated group (Dexa) compared with the control group and reduced in the DS group. Therefore, β-sitosterol would be a potential treatment agent for aging sarcopenia.
    Keywords:  FoxO1; MAFbx; MuRF1; dexamethasone; muscle atrophy; β-sitosterol
    DOI:  https://doi.org/10.3390/nu14142894
  39. Front Endocrinol (Lausanne). 2022 ;13 907908
      Muscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice. We found that corticosterone treatment reduced grip strength in female mice only, whereas muscle mass was reduced in both sexes. Skeletal muscle transcriptional responses to corticosterone treatment were more pronounced and widespread in male mice. Synthetic glucocorticoid treatment reduced grip strength in both sexes, while female mice were more sensitive to muscle atrophy than male mice. To evaluate the role of androgens, chemically-castrated male mice were treated with synthetic glucocorticoids. We observed additively reduced muscle mass, but did not observe any interaction effects. Although sex differences in glucocorticoid responses in skeletal muscle are partly influenced by androgen signaling, further studies are warranted to fully delineate the underlying mechanisms.
    Keywords:  androgen; betamethasone; corticosterone; glucocorticoids; muscle atrophy
    DOI:  https://doi.org/10.3389/fendo.2022.907908
  40. Curr Osteoporos Rep. 2022 Jul 26.
      PURPOSE OF REVIEW: The incidence of musculoskeletal disorders affecting bones, joints, and muscles is dramatically increasing in parallel with the increased longevity of the worldwide population, severely impacting on the individual's quality of life and on the healthcare costs. Inactivity and sedentary lifestyle are nowadays considered the main drivers of age-associated musculoskeletal disorders and exercise may counteract such alterations also in other bone- and muscle-centered disorders. This review aims at clarifying the potential use of exercise training to improve musculoskeletal health.RECENT FINDINGS: Both the skeletal muscle and the bone are involved in a complex crosstalk determining, in part through tissue-specific and inflammatory/immune released factors, the occurrence of musculoskeletal disorders. Exercise is able to modulate the levels of those molecules and several associated molecular pathways. Evidence from preclinical and clinical trials supports the adoption of exercise and the future use of exercise mimicking drugs will optimize the care of individuals with musculoskeletal disorders.
    Keywords:  Exercise; Exercise mimetics; Frailty; Musculoskeletal disorders; Tissue cross-talk
    DOI:  https://doi.org/10.1007/s11914-022-00739-6
  41. Int J Environ Res Public Health. 2022 Jul 20. pii: 8806. [Epub ahead of print]19(14):
      Human muscle tissue undergoes dynamic changes in gene expression during exercise, and the dynamics of these genes are correlated with muscle adaptation to exercise. A database of gene expression changes in human muscle before and after exercise was established for data mining. A web-based searchable database, Exe-muscle, was developed using microarray sequencing data, which can help users to retrieve gene expression at different times. Search results provide a complete description of target genes or genes with specific expression patterns. We can explore the molecular mechanisms behind exercise science by studying the changes in muscle gene expression over time before and after exercise. Based on the high-throughput microarray data before and after human exercise, a human pre- and post-exercise database was created using web-based database technology, which researchers can use or share their gene expression data. The Exe-muscle database is accessible online.
    Keywords:  Exe-muscle; database; gene; high-throughput sequencing
    DOI:  https://doi.org/10.3390/ijerph19148806
  42. Front Nutr. 2022 ;9 925908
      A decrease in TCA cycle activity may lead to impaired nutrition metabolism and cellular energy shortage. Herein, we aimed to characterize the detailed metabolic changes that compensate for energy shortages in energy-consuming organs (heart and skeletal muscles) in mice with knockout of citrate synthase (CS), an important enzyme in the TCA cycle. CS hetero knockout (CS +/-) mice and wild-type mice were fed a low-carbohydrate ketogenic diet (LCKD) or high-fat, high-carbohydrate diet (HFHCD) to induce metabolic changes. Body weight, blood serum parameters, metabolic gene expression, and adenosine triphosphate (ATP) levels were measured in the heart and skeletal muscles. Glycogen content, anabolic and catabolic biomarkers, and morphological changes were also assessed in the skeletal muscles. After diet feeding, there were no differences observed in the body weight and blood serum parameters between wild-type and CS +/- mice. The cardiac expression of genes related to the utilization of fatty acids, monocarboxylates, and branched amino acids increased in LCKD-fed CS +/- mice. In contrast, no significant differences in gene expression were observed in the muscles of LCKD-fed mice or the heart and muscles of HFHCD-fed mice. ATP levels decreased only in the skeletal muscles of LCKD-fed CS +/- mice. Additionally, the decrease in glycogen content, suppression of p70 S6 kinase, and presence of type I fiber atrophy were observed in the muscles of LCKD-fed CS +/- mice. These results suggest that the energy-consuming organs with CS insufficiency may undergo tissue-specific adaption to compensate for energy shortages when the carbohydrate supply is limited.
    Keywords:  TCA cycle; citrate synthase; heart; knockout mice; skeletal muscle
    DOI:  https://doi.org/10.3389/fnut.2022.925908
  43. Front Pharmacol. 2022 ;13 930308
      Metformin is an oral antidiabetic agent that has been widely used in clinical practice for over 60 years, and is currently the most prescribed antidiabetic drug worldwide. However, the molecular mechanisms of metformin action in different tissues are still not completely understood. Although metformin-induced inhibition of mitochondrial respiratory chain Complex I and activation of AMP-activated protein kinase have been observed in many studies, published data is inconsistent. Furthermore, metformin concentrations used for in vitro studies and their pharmacological relevance are a common point of debate. The aim of this study was to explore the effects of different metformin concentrations on energy metabolism and activity of relevant signaling pathways in C2C12 muscle cells in vitro. In order to determine if therapeutic metformin concentrations have an effect on skeletal muscle cells, we used micromolar metformin concentrations (50 µM), and compared the effects with those of higher, millimolar concentrations (5 mM), that have already been established to affect mitochondrial function and AMPK activity. We conducted all experiments in conditions of high (25 mM) and low glucose (5.5 mM) concentration, in order to discern the role of glucose availability on metformin action. According to our results, micromolar metformin treatment did not cause Complex I inhibition nor AMPK activation. Also, cells cultured in low glucose medium were more sensitive to Complex I inhibition, mitochondrial membrane depolarization and AMPK activation by millimolar metformin, but cells cultured in high glucose medium were more prone to induction of ROS production. In conclusion, even though suprapharmacological metformin concentrations cause Complex I inhibition and AMPK activation in skeletal muscle cells in vitro, therapeutic concentrations cause no such effect. This raises the question if these mechanisms are relevant for therapeutic effects of metformin in skeletal muscle.
    Keywords:  metformin; mitochondria; respirometry; skeletal muscle; therapeutic concentration
    DOI:  https://doi.org/10.3389/fphar.2022.930308
  44. Antioxidants (Basel). 2022 Jun 29. pii: 1299. [Epub ahead of print]11(7):
      The accumulation of ROS, mainly due to increased mitochondrial production and/or decreased scavenger systems, is often associated with the term oxidative stress, used to define a condition judged to be problematic for muscle cells [...].
    DOI:  https://doi.org/10.3390/antiox11071299
  45. Noncoding RNA. 2022 Jun 30. pii: 48. [Epub ahead of print]8(4):
      It is now well-established that microRNA dysregulation is a hallmark of human diseases, and that aberrant expression of miRNA is not randomly associated with human pathologies but plays a causal role in the pathological process. Investigations of the molecular mechanism that links miRNA dysregulation to pathophysiology can therefore further the understanding of human diseases. The biological effect of miRNA is thought to be mediated principally by miRNA target genes. Consequently, the target genes of dysregulated miRNA serve as a proxy for the biological interpretation of miRNA dysregulation, which is performed by target gene pathway enrichment analysis. However, this method unfortunately often fails to provide testable hypotheses concerning disease mechanisms. In this paper, we describe a method for the interpretation of miRNA dysregulation, which is based on miRNA host genes rather than target genes. Using this approach, we have recently identified the perturbations of lipid metabolism, and cholesterol in particular, in Duchenne muscular dystrophy (DMD). The host gene-based interpretation of miRNA dysregulation therefore represents an attractive alternative method for the biological interpretation of miRNA dysregulation.
    Keywords:  Duchenne muscular dystrophy; bioinformatics; cholesterol; host gene; metabolism; miRNA; pathophysiology
    DOI:  https://doi.org/10.3390/ncrna8040048
  46. Proc Natl Acad Sci U S A. 2022 Aug 02. 119(31): e2206103119
      Heterologous expression of proteins is used widely for the biosynthesis of biologics, many of which are secreted from cells. In addition, gene therapy and messenger RNA (mRNA) vaccines frequently direct the expression of secretory proteins to nonnative host cells. Consequently, it is crucial to understand the maturation and trafficking of proteins in a range of host cells including muscle cells, a popular therapeutic target due to the ease of accessibility by intramuscular injection. Here, we analyzed the production efficiency for α1-antitrypsin (AAT) in Chinese hamster ovary cells, commonly used for biotherapeutic production, and myoblasts (embryonic progenitor cells of muscle cells) and compared it to the production in the major natural cells, liver hepatocytes. AAT is a target protein for gene therapy to address pathologies associated with insufficiencies in native AAT activity or production. AAT secretion and maturation were most efficient in hepatocytes. Myoblasts were the poorest of the cell types tested; however, secretion of active AAT was significantly augmented in myoblasts by treatment with the proteostasis regulator suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. These findings were extended and validated in myotubes (mature muscle cells) where AAT was transduced using an adeno-associated viral capsid transduction method used in gene therapy clinical trials. Overall, our study sheds light on a possible mechanism to enhance the efficacy of gene therapy approaches for AAT and, moreover, may have implications for the production of proteins from mRNA vaccines, which rely on the expression of viral glycoproteins in nonnative host cells upon intramuscular injection.
    Keywords:  endoplasmic reticulum; protein quality control; proteostasis; proteostasis regulator; serpin
    DOI:  https://doi.org/10.1073/pnas.2206103119