Discov Med. 2024 Feb;36(181): 402-414
BACKGROUND: Mechanical ventilation (MV) sustains life in critically ill patients by providing adequate alveolar ventilation. However, prolonged MV could induce inspiratory muscle atrophy known as ventilator-induced diaphragmatic dysfunction (VIDD). Insulin-like growth factor (IGF)-1 has been proven to play crucial roles in regulating skeletal muscle size and function. Meanwhile, the forkhead box protein O1 (FOXO1) has been linked to muscle atrophy. This study aimed to explore the effect of IGF-1 on muscle degradation and remodeling in VIDD and delved into the association of the underlying mechanism involving FOXO1.METHODS: VIDD models were established by treating rats with MV. Adeno-associated virus (AAV) was used for transfection to construct IGF-1 and/or FOXO1 overexpressed rats. There were four groups in this study: normal rats (NC), normal rats with MV treatment (MV), IGF-1-overexpressed rats with MV treatment (MV+IGF-1), and rats overexpressing both IGF-1 and FOXO1 with MV treatment (MV+IGF-1+FOXO1). Protein levels were measured by western blot or enzyme-linked immunosorbent assay (ELISA), and mRNA levels were detected by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). IGF-1 and FOXO1 expression were validated by detecting mRNA and protein levels. Diaphragmatic muscle contractility and morphometry were tested using stimulating electrodes in conjunction with hematoxylin and eosin (H&E) staining. Interleukin (IL)-6 and carbonylated protein were used for evaluating muscle atrophy and oxidation, respectively. Protein degradation was determined by troponin-I level and tyrosine release. Apoptosis was assessed using the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate (UTP) nick-end labeling (TUNEL) assay, alongside markers like Bax, B-cell lymphoma 2 (BCL-2), and Cleaved Caspase-3. Atrogin-1, muscle RING finger 1 (MURF1), neuronally expressed developmentally downregulated 4 (NEDD4), muscle ubiquitin ligase of SCF complex in atrophy-1 (MUSA1), and ubiquitinated protein was used to determine proteolysis. Additionally, protein synthesis was measured by assessing the rates of mixed muscle protein (MMP) and myosin heavy chain (MHC).
RESULTS: MV treatment caused IGF-1 downregulation (p < 0.01) and FOXO1 upregulation (p < 0.01). The IGF-1 upregulation downregulated FOXO1 in the MV+IGF-1 group (p < 0.001) while IGF-1 and FOXO1 were both upregulated in the MV+IGF-1+FOXO1 group (p < 0.001). The treatment of MV decreased muscle contractility and cross-sectional areas of diaphragm muscle fibers (p < 0.01). Additionally, IL-6, troponin-1, tyrosine release, carbonylated protein, TUNEL positive nuclei, Bax, Cleaved Caspase-3, Atrogin-1, MURF1, neuronally expressed developmentally downregulated 4 (NEDD4), MUSA1, and ubiquitinated protein levels increased significantly in MV group (p < 0.001) while levels of BCL-2, fractional synthetic rate of MMP and MHC, and type I and type II MHC protein mRNA expression decreased in MV group (p < 0.001). All of these alterations were reversed in the MV+IGF-1 group (p < 0.01), while the IGF-1-induced reversion was disrupted in the MV+IGF-1+FOXO1 group (p < 0.01).
CONCLUSIONS: IGF-1 may protect diaphragmatic muscles from VIDD-induced structural damage and function loss by downregulating FOXO1. This action suppresses muscle breakdown and facilitates muscle remodeling in diaphragmatic muscles affected by VIDD.
Keywords: FOXO1; IGF-1; VIDD; diaphragm; skeletal muscle; ventilator-induced diaphragmatic dysfunction