bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2021‒05‒02
twenty-one papers selected by
Richard Halfpenny
Staffordshire University


  1. PLoS Negl Trop Dis. 2021 Apr 27. 15(4): e0009391
      BACKGROUND: Aedes albopictus is one of the most invasive species in the world as well as the important vector for mosquito-borne diseases such as dengue fever, chikungunya fever and zika virus disease. Chemical control of mosquitoes is an effective method to control mosquito-borne diseases, however, the wide and improper application of insecticides for vector control has led to serious resistance problems. At present, there have been many reports on the resistance to pyrethroid insecticides in vector mosquitoes including deltamethrin to Aedes albopictus. However, the fitness cost and vector competence of deltamethrin resistant Aedes albopictus remain unknown. To understand the impact of insecticide resistant mosquito is of great significance for the prevention and control mosquitoes and mosquito-borne diseases.METHODOLOGY/PRINCIPAL FINDINGS: A laboratory resistant strain (Lab-R) of Aedes albopictus was established by deltamethrin insecticide selecting from the laboratory susceptible strain (Lab-S). The life table between the two strains were comparatively analyzed. The average development time of Lab-R and Lab-S in larvae was 9.7 days and 8.2 days (P < 0.005), and in pupae was 2.0 days and 1.8 days respectively (P > 0.05), indicating that deltamethrin resistance prolongs the larval development time of resistant mosquitoes. The average survival time of resistant adults was significantly shorter than that of susceptible adults, while the body weight of resistant female adults was significantly higher than that of the susceptible females. We also compared the vector competence for dengue virus type-2 (DENV-2) between the two strains via RT-qPCR. Considering the results of infection rate (IR) and virus load, there was no difference between the two strains during the early period of infection (4, 7, 10 day post infection (dpi)). However, in the later period of infection (14 dpi), IR and virus load in heads, salivary glands and ovaries of the resistant mosquitoes were significantly lower than those of the susceptible strain (IR of heads, salivary glands and ovaries: P < 0.005; virus load in heads and salivary glands: P < 0.05; virus load in ovaries: P < 0.001). And then, fourteen days after the DENV-2-infectious blood meal, females of the susceptible and resistant strains were allow to bite 5-day-old suckling mice. Both stains of mosquito can transmit DENV-2 to mice, but the onset of viremia was later in the mice biting by resistant group as well as lower virus copies in serum and brains, suggesting that the horizontal transmission of the resistant strain is lower than the susceptible strain. Meanwhile, we also detected IR of egg pools of the two strains on 14 dpi and found that the resistant strain were less capable of vertical transmission than susceptible mosquitoes. In addition, the average survival time of the resistant females infected with DENV-2 was 16 days, which was the shortest among the four groups of female mosquitoes, suggesting that deltamethrin resistance would shorten the life span of female Aedes albopictus infected with DENV-2.
    CONCLUSIONS/SIGNIFICANCE: As Aedes albopictus developing high resistance to deltamethrin, the resistance prolonged the growth and development of larvae, shorten the life span of adults, as well as reduced the vector competence of resistant Aedes albopictus for DENV-2. It can be concluded that the resistance to deltamethrin in Aedes albopictus is a double-edged sword, which not only endow the mosquito survive under the pressure of insecticide, but also increase the fitness cost and decrease its vector competence. However, Aedes albopictus resistant to deltamethrin can still complete the external incubation period and transmit dengue virus, which remains a potential vector for dengue virus transmission and becomes a threat to public health. Therefore, we should pay high attention for the problem of insecticide resistance so that to better prevent and control mosquito-borne diseases.
    DOI:  https://doi.org/10.1371/journal.pntd.0009391
  2. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S171-S186
      BACKGROUND: Malaria transmission is currently resurging in Papua New Guinea (PNG). In addition to intervention coverage, social and cultural factors influence changes in epidemiology of malaria in PNG. This study aimed to better understand the role of human behavior in relation to current malaria control efforts.METHODS: A mixed-method design was used in 2 sites in PNG. In-depth interviews, focus group discussions, cross-sectional malaria indicator survey, and population census were implemented.
    RESULTS: We identified 7 population groups based on demographics and behavioral patterns with potential relevance to Anopheles exposure. People spend a substantial amount of time outdoors or in semiopen structures. Between 4 pm and 8 am, all types of activities across all groups in both study sites may be exposing individuals to mosquito bites; sleeping under a long-lasting insecticidal net was the exception. The later in the night, the more outdoor presence was concentrated in adult men.
    CONCLUSIONS: Our findings highlight the potential of outdoor exposure to hamper malaria control as people spend a remarkable amount of time outdoors without protection from mosquitoes. To prevent ongoing transmission, targeting of groups, places, and activities with complementary interventions should consider setting-specific human behaviors in addition to epidemiological and entomological data.
    Keywords:  LLINs; Papua New Guinea; human behavior; human-vector contact; malaria; outdoor mosquito exposure; outdoor transmission; residual transmission
    DOI:  https://doi.org/10.1093/infdis/jiaa402
  3. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S155-S170
      INTRODUCTION: In order to improve our understanding of the fundamental limits of core interventions and guide efforts based on prioritization and identification of effective/novel interventions with great potentials to interrupt persistent malaria transmission in the context of high vector control coverage, the drivers of persistent disease transmission were investigated in three eco-epidemiological settings; forested areas in Cameroon, coastal area in Kenya and highland areas in Ethiopia.METHODS: Mosquitoes were sampled in three eco-epidemiological settings using different entomological sampling techniques and analysed for Plasmodium infection status and blood meal origin in blood-fed specimens. Human behavioural surveys were conducted to assess the knowledge and attitude of the population on malaria and preventive measures, their night activities, and sleeping pattern. The parasitological analysis was conducted to determine the prevalence of Plasmodium infection in the population using rapid diagnostic tests.
    RESULTS: Despite the diversity in the mosquito fauna, their biting behaviour was found to be closely associated to human behaviour in the three settings. People in Kenya and Ethiopia were found to be more exposed to mosquito bites during the early hours of the evening (18-21h) while it was in the early morning (4-6 am) in Cameroon. Malaria transmission was high in Cameroon compared to Kenya and Ethiopia with over 50% of the infected bites recorded outdoors. The non-users of LLINs were 2.5 to 3 times more likely to be exposed to the risk of acquiring malaria compared to LLINs users. Malaria prevalence was high (42%) in Cameroon, and more than half of the households visited had at least one individual infected with Plasmodium parasites.
    CONCLUSIONS: The study suggests high outdoor malaria transmission occurring in the three sites with however different determinants driving residual malaria transmission in these areas.
    Keywords:  Cameroon; Ethiopia; Kenya; human behavior; malaria vectors; persistent malaria transmission
    DOI:  https://doi.org/10.1093/infdis/jiaa774
  4. J Trop Med. 2021 ;2021 6643226
      The present study was conducted to determine the prevalence of filariasis causing parasites in adult mosquitoes and vector mosquito larval breeding in four Medical Officer of Health (MOH) areas in Gampaha district, Sri Lanka. Adult female mosquitoes at their resting places were collected using a prokopack aspirator operated twice a day from 7.00 am to 8.00 am and 8.00 pm to 9 pm in predetermined dates. Microfilarial worms in dissected mosquitoes were morphologically identified. Nine species of mosquitoes, namely, Culex quinquefasciatus, Cx. pipiens, Cx. fuscocephala, Cx. gelidus, Armigeres subalbatus, Mansonia uniformis, Ma. annulifera, Aedes aegypti, and Ae. Albopictus, were captured. A total of 1194 mosquito larvae were collected that belonged into three genera, namely, Culex (62.73%), Armigeres (25.62%), and Mansonia (11.64%), from blocked drains, polluted drains, blocked canals, large polluted water bodies, stagnant water bodies, marsh lands, rice field mudflats, and concrete pits. Large polluted water bodies (Shannon-Wiener diversity index/H' = 1.5591) were the most diversed habitat type. In breeding water, average pH mainly lied in between 6 and 8 and average dissolved oxygen ranged from 3 to 7 mg/L. Cx. quinquefasciatus and Armigeres subalbatus adult female mosquitoes captured from Kelaniya MOH area were positive for microfilariae and were identified as Wuchereria bancrofti and Dirofilaria repens, respectively. This study concludes possible lymphatic filariasis situation is in extremely very low level persistent (0.06%) where transmission cannot be sustained and is restricted only to isolated pockets in the study area. The zoonotic strains of filariasis causing subcutaneous dirofilariasis in humans by Dirofilaria repens is continuing to survive due to the presence of stray dogs that serve as reservoir hosts.
    DOI:  https://doi.org/10.1155/2021/6643226
  5. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S55-S60
      The transmission of Plasmodium parasites in residual foci is currently a major roadblock for malaria elimination. Human activities and behavior, along with outdoor biting mosquitoes with opportunistic feeding preferences are the main causes of the inefficacy of the main vector control interventions, long lasting insecticide-impregnated nets and insecticide residual spraying. Several strategies to abate or repel outdoor biting mosquito vectors are currently being researched, but the impact of insecticide resistance on the efficacy of these and current indoor-applied insecticides requires further assessment. Understanding the human, ecological and vector factors, determining transmission in residual foci is necessary for the design and implementation of novel control strategies. Vector control alone is insufficient without adequate epidemiological surveillance and prompt treatment of malaria cases, the participation of endemic communities in prevention and control is required. In addition, malaria control programs should optimize their structure and organization, and their coordination with other government sectors.
    Keywords:  residual malaria
    DOI:  https://doi.org/10.1093/infdis/jiaa582
  6. Viruses. 2021 Apr 25. pii: 755. [Epub ahead of print]13(5):
      The emergence of new human viral pathogens and re-emergence of several diseases are of particular concern in the last decades. Oropouche orthobunyavirus (OROV) is an arbovirus endemic to South and Central America tropical regions, responsible to several epidemic events in the last decades. There is little information regarding the ability of OROV to be transmitted by urban/peri-urban mosquitoes, which has limited the predictability of the emergence of permanent urban transmission cycles. Here, we evaluated the ability of OROV to infect, replicate, and be transmitted by three anthropophilic and urban species of mosquitoes, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We show that OROV is able to infect and efficiently replicate when systemically injected in all three species tested, but not when orally ingested. Moreover, we find that, once OROV replication has occurred in the mosquito body, all three species were able to transmit the virus to immunocompromised mice during blood feeding. These data provide evidence that OROV is restricted by the midgut barrier of three major urban mosquito species, but, if this restriction is overcome, could be efficiently transmitted to vertebrate hosts. This poses a great risk for the emergence of permanent urban cycles and geographic expansion of OROV to other continents.
    Keywords:  Aedes aegypti; Aedes albopictus; Culex quinquefasciatus; Oropouche; urban epidemics; vector competence
    DOI:  https://doi.org/10.3390/v13050755
  7. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S111-S142
      BACKGROUND: Despite substantial reductions in malaria burden and improvement in case management, malaria remains a major public health challenge in the Asia-Pacific region. Residual malaria transmission (RMT) is the fraction of total transmission that persists after achievement of full operational coverage with effective insecticide-treated bed nets (ITNs)/long-lasting insecticidal nets (LLINs) and/or indoor residual spray interventions. There is a critical need to standardize and share best practices for entomological, anthropological, and product development investigative protocols to meet the challenges of RMT and elimination goals.METHODS: A systematic review was conducted to describe when and where RMT is occurring, while specifically targeting ownership and usage of ITN/LLINs, indoor residual spray application, insecticide susceptibility of vectors, and human and vector biting behavior, with a focus on nighttime activities.
    RESULTS: Sixty-six publications from 1995 to present met the inclusion criteria for closer review. Associations between local vector control coverage and use with behaviors of human and mosquito vectors varied by locality and circumstance. Consequently, the magnitude of RMT is insufficiently studied and analyzed with sparse estimates of individual exposure in communities, insufficient or incomplete observations of ITN/LLIN use, and the local human population movement into and from high-risk areas.
    CONCLUSIONS: This review identified significant gaps or deficiencies that require urgent attention, namely, developing standardized procedures and methods to estimate risk exposure beyond the peridomestic setting, analytical approaches to measure key human-vector interactions, and seasonal location-specific agricultural or forest use calendars, and establishing the collection of longitudinal human and vector data close in time and location.
    Keywords:  Residual malaria transmission; early outdoor mosquito biting; exophagy; human behavior; nighttime activity; universal or maximal coverage of ITN and IRS
    DOI:  https://doi.org/10.1093/infdis/jiab004
  8. Trop Med Infect Dis. 2021 Apr 02. pii: 45. [Epub ahead of print]6(2):
      In the period from 2015 to 2020, an entomological survey for the presence of West Nile virus (WNV) and Usutu virus (USUV) in mosquitoes was performed in northwestern Croatia. A total of 20,363 mosquitoes were sampled in the City of Zagreb and Međimurje county, grouped in 899 pools and tested by real-time RT-PCR for WNV and USUV RNA. All pools were negative for WNV while one pool each from 2016 (Aedes albopictus), 2017 (Culex pipiens complex), 2018 (Cx. pipiens complex), and 2019 (Cx. pipiens complex), respectively, was positive for USUV. The 2018 and 2019 positive pools shared 99.31% nucleotide homology within the USUV NS5 gene and both clustered within USUV Europe 2 lineage. The next-generation sequencing of one mosquito pool (Cx. pipiens complex) collected in 2018 in Zagreb confirmed the presence of USUV and revealed several dsDNA and ssRNA viruses of insect, bacterial and mammalian origin.
    Keywords:  Croatia; Usutu virus; West Nile virus; mosquitoes
    DOI:  https://doi.org/10.3390/tropicalmed6020045
  9. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S143-S154
      After 2 decades of using insecticide-treated nets (ITNs) and improved case management, malaria burden in the historically-holoendemic Kilombero valley in Tanzania has significantly declined. We review key characteristics of the residual transmission and recommend options for improvement. Transmission has declined by >10-fold since 2000 but remains heterogeneous over small distances. Following the crash of Anopheles gambiae, which coincided with ITN scale-up around 2005-2012, Anopheles funestus now dominates malaria transmission. While most infections still occur indoors, substantial biting happens outdoors and before bed-time. There is widespread resistance to pyrethroids and carbamates; An. funestus being particularly strongly-resistant. In short and medium-term, these challenges could be addressed using high-quality indoor residual spraying with nonpyrethroids, or ITNs incorporating synergists. Supplementary tools, eg, spatial-repellents may expand protection outdoors. However, sustainable control requires resilience-building approaches, particularly improved housing and larval-source management to suppress mosquitoes, stronger health systems guaranteeing case-detection and treatment, greater community-engagement and expanded health education.
    Keywords:   Anopheles funestus ; complimentary tools; residual malaria transmission; resistance; risk perception; vector control
    DOI:  https://doi.org/10.1093/infdis/jiaa653
  10. PLoS Negl Trop Dis. 2021 Apr 26. 15(4): e0009381
      BACKGROUND: Mosquitoes host and transmit numerous arthropod-borne viruses (arboviruses) that cause disease in both humans and animals. Effective surveillance of virome profiles in mosquitoes is vital to the prevention and control of mosquito-borne diseases in northwestern China, where epidemics occur frequently.METHODS: Mosquitoes were collected in the Shaanxi-Gansu-Ningxia region (Shaanxi Province, Gansu Province, and Ningxia Hui Autonomous Region) of China from June to August 2019. Morphological methods were used for taxonomic identification of mosquito species. High-throughput sequencing and metagenomic analysis were used to characterize mosquito viromes.
    RESULTS: A total of 22,959 mosquitoes were collected, including Culex pipiens (45.7%), Culex tritaeniorhynchus (40.6%), Anopheles sinensis (8.4%), Aedes (5.2%), and Armigeres subalbatus (0.1%). In total, 3,014,183 (0.95% of clean reads) viral sequences were identified and assigned to 116 viral species (including pathogens such as Japanese encephalitis virus and Getah virus) in 31 viral families, including Flaviviridae, Togaviridae, Phasmaviridae, Phenuiviridae, and some unclassified viruses. Mosquitoes collected in July (86 species in 26 families) showed greater viral diversity than those from June and August. Culex pipiens (69 species in 25 families) and Culex tritaeniorhynchus (73 species in 24 families) carried more viral species than Anopheles sinensis (50 species in 19 families) or Aedes (38 species in 20 families) mosquitoes.
    CONCLUSION: Viral diversity and abundance were affected by mosquito species and collection time. The present study elucidates the virome compositions of various mosquito species in northwestern China, improving the understanding of virus transmission dynamics for comparison with those of disease outbreaks.
    DOI:  https://doi.org/10.1371/journal.pntd.0009381
  11. Parasit Vectors. 2021 Apr 29. 14(1): 228
      BACKGROUND: Dengue virus (DENV) is a mosquito-borne arbovirus transmitted by Aedes mosquitoes, but is not endemic in all areas where this vector is found. For example, the relatively sparse distribution of cases in West Africa is generally attributed to the refractory nature of West African Aedes aegypti (Ae. aegypti) to DENV infection, and particularly the forest-dwelling Ae. aegypti formosus. However, recent studies have shown these mosquitoes to be competent vectors within some West African countries that have suffered outbreaks in the past, such as Senegal. There is however little information on the vector competence of the Ae. aegypti in West African countries such as Ghana with no reported outbreaks.METHODS: This study examined the vector competence of 4 Ae. aegypti colonies from urban, semi-urban, and two rural locations in Ghana in transmitting DENV serotypes 1 and 2, using a single colony from Vietnam as control. Midgut infection and virus dissemination were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while the presence and concentration of DENV in the saliva of infectious mosquitoes was determined by the focus forming assay.
    RESULTS: There were significant differences in the colonies' susceptibility to virus infection, dissemination, and transmission. All examined Ghanaian mosquitoes were refractory to infection by DENV serotype 2, while some colonies exhibited potential to transmit DENV serotype 1. None of the tested colonies were as competent as the control group colony.
    CONCLUSIONS: These findings give insight into the possible risk of outbreaks, particularly in the urban areas in the south of Ghana, and highlight the need for continuous surveillance to determine the transmission status and outbreak risk. This study also highlights the need to prevent importation of different DENV strains and potential invasion of new highly vector-competent Ae. aegypti strains, particularly around the ports of entry.
    Keywords:  Aedes aegypti; Dengue virus; Ghana; Susceptibility; Vector competence; West Africa
    DOI:  https://doi.org/10.1186/s13071-021-04728-z
  12. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S81-S90
      BACKGROUND: Insecticide-based vector control is responsible for reducing malaria mortality and morbidity. Its success depends on a better knowledge of the vector, its distribution, and resistance status to the insecticides used. In this paper, we assessed Anopheles gambiae sensu lato (A gambiae s.l.) population resistance to pyrethroids in different ecological settings.METHODS: The World Health Organization standard bioassay test was used to assess F0A gambiae s.l. susceptibility to pyrethroids. Biochemical Synergist assays were conducted with piperonyl butoxide (PBO), S,S,S-tributyl phosphotritioate, and diethyl maleate. L1014F, L1014S, and N1575Y knockdown resistance (kdr) mutations were investigated using TaqMan genotyping.
    RESULTS: Anopheles gambiae sensu lato was composed of Anopheles arabienisis, Anopheles coluzzii, and A gambiae in all study sites. Anopheles gambiae sensu lato showed a strong phenotypic resistance to deltamethrin and permethrin in all sites (13% to 41% mortality). In many sites, pre-exposure to synergists partially improved the mortality rate suggesting the presence of detoxifying enzymes. The 3 kdr (L1014F, L1014S, and N1575Y) mutations were found, with a predominance of L1014F, in all species.
    CONCLUSIONS: Multiple resistance mechanisms to pyrethroids were observed in A gambiae s.l. in Mali. The PBO provided a better partial restoration of susceptibility to pyrethroids, suggesting that the efficacy of long-lasting insecticidal nets may be improved with PBO.
    Keywords:   A gambiae s.l ; Mali; insecticide resistance; pyrethroids
    DOI:  https://doi.org/10.1093/infdis/jiaa190
  13. Pathogens. 2021 Apr 01. pii: 415. [Epub ahead of print]10(4):
      Monitoring cases of insecticide resistance aggravation and the effect on the efficacy of control tools is crucial for successful malaria control. In this study, the resistance intensity of major malaria vectors from Uganda was characterised and its impact on the performance of various insecticide-treated nets elucidated. High intensity of resistance to the discriminating concentration (DC), 5× DC, and 10× DC of pyrethroids was observed in both Anopheles funestus and Anopheles gambiae in Mayuge and Busia leading to significant reduced performance of long-lasting insecticidal nets (LLINs) including the piperonyl butoxide (PBO)-based nets (Olyset Plus). Molecular analysis revealed significant over-expression of cytochrome P450 genes (CYP9K1 and CYP6P9a/b). However, the expression of these genes was not associated with resistance escalation as no difference was observed in the level of expression in mosquitoes resistant to 5× DC and 10× DC compared to 1× DC suggesting that other resistance mechanisms are involved. Such high intensity of pyrethroid resistance in Uganda could have terrible consequences on the effectiveness of insecticide-based interventions and urgent action should be taken to prevent the spread of super-resistance in malaria vectors.
    Keywords:  An. funestus; CYP9K1; Uganda; cytochrome P450; malaria; metabolic resistance; resistance escalation; vector control
    DOI:  https://doi.org/10.3390/pathogens10040415
  14. Insects. 2021 Apr 21. pii: 374. [Epub ahead of print]12(5):
      Urbanization has been associated with a loss of overall biodiversity and a simultaneous increase in the abundance of a few species that thrive in urban habitats, such as highly adaptable mosquito vectors. To better understand how mosquito communities differ between levels of urbanization, we analyzed mosquito samples from inside private homes submitted to the citizen science project 'Mückenatlas'. Applying two urbanization indicators based on soil sealing and human population density, we compared species composition and diversity at, and preferences towards, different urbanization levels. Species composition between groups of lowest and highest levels of urbanization differed significantly, which was presumably caused by reduced species richness and the dominance of synanthropic mosquito species in urban areas. The genus Anopheles was frequently submitted from areas with a low degree of urbanization, Aedes with a moderate degree, and Culex and Culiseta with a high degree of urbanization. Making use of citizen science data, this first study of indoor mosquito diversity in Germany demonstrated a simplification of communities with increasing urbanization. The dominance of vector-competent species in urban areas poses a potential risk of epidemics of mosquito-borne diseases that can only be contained by a permanent monitoring of mosquitoes and by acquiring a deeper knowledge about how anthropogenic activities affect vector ecology.
    Keywords:  biodiversity; citizen science; epidemiology; mosquitoes; urbanization
    DOI:  https://doi.org/10.3390/insects12050374
  15. J Infect Dis. 2021 Apr 27. 223(Supplement_2): S99-S110
      BACKGROUND: Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology.METHODS: By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department.
    RESULTS: Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions.
    CONCLUSIONS: High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior.
    Keywords:  Amazon; Peru; entomological inoculation rate; heterogeneity; human biting rate; incidence; malaria; prevalence; transmission
    DOI:  https://doi.org/10.1093/infdis/jiaa496
  16. Pathogens. 2021 Apr 27. pii: 525. [Epub ahead of print]10(5):
      The Mayaro virus (MAYV) is an arbovirus that circulates mainly in tropical forests or rural areas in Latin America and is transmitted mainly by Haemagogus mosquitoes. The objective of this study was to evaluate the vector competence, microbiome, and the presence of Wolbachia in three Aedes albopictus populations infected with MAYV. The vector competence was assessed based on viral infection and transmission by RT-qPCR. In addition, the microbiome was evaluated by amplification of the 16S rRNA V4 region and PCR to detect the presence of Wolbachia (strain wAlbA/wAlbB). Our results show that all three populations were susceptible to MAYV infection. The potential transmission of the MAYV was consistent in all populations of naïve mosquitoes injected (more than 50%). The microbiome analysis revealed 118 OTUs (operational taxonomic unit) from the three populations, 8 phyla, 15 classes, 26 orders, 35 families, 65 genera, and 53 species. All populations had Pseudomonas and Wolbachia as predominant genera. There was no difference between the variables for MAYV and Wolbachia (wAlbA or wAlbB) in the abdomen. However, in the head + thorax samples at 14 dpi, there was a difference between the two populations, indicating a possible correlation between the presence of Wolbachia (wAlbB) and infection. Overall, we show evidence that Ae. albopictus displays significant infection and transmission competence for the MAYV in the laboratory, and its bacterial microbiota play an important role in the host, mainly the strains of Wolbachia. The influence of the intestinal microbiota of Ae. albopictus is poorly known, and a better understanding of these interactions would open new perspectives for disease control through the manipulation of microbial communities. The exact contribution of this mosquito species to the transmission of the MAYV in the field remains to be confirmed.
    Keywords:  Aedes albopictus; Mayaro virus; microbiota and Wolbachia; vector competence
    DOI:  https://doi.org/10.3390/pathogens10050525
  17. Am J Trop Med Hyg. 2021 Apr 26. pii: tpmd210020. [Epub ahead of print]
      Dengue is an ongoing health risk for Peace Corps Volunteers (PCVs) working in the tropics. On May 2019, the Peace Corps Office of Health Services notified the Centers for Disease Control and Prevention (CDC) of a dengue outbreak among PCVs in Timor-Leste. The purpose of this investigation was to identify the clinical, demographic, and epidemiological characteristics of PCVs with dengue and recommend dengue preventive measures. To identify PCVs with dengue and describe disease severity, the medical records of PCVs reporting fever during September 2018-June 2019 were reviewed. To identify factors associated with dengue virus (DENV) infection, we administered a questionnaire on demographics, travel history, and mosquito avoidance behaviors and collected blood specimens to detect the anti-DENV IgM antibody to diagnose recent infection. Of 35 PCVs in-country, 11 (31%) tested positive for dengue (NS1, IgM, PCR), eight requiring hospitalization and medical evacuation. Among 27 (77%) PCVs who participated in the investigation, all reported having been recently bitten by mosquitoes and 56% reported being bitten most often at home; only 16 (59%) reported having screens on bedroom windows. Nearly all (93%) PCVs reported using a bed net every night; fewer (70%) reported using mosquito repellent at least once a day. No behaviors were significantly associated with DENV infection. Raising awareness of dengue risk among PCVs and continuing to encourage mosquito avoidance behavior to prevent dengue is critical. Access to and use of measures to avoid mosquito bites should be improved or implemented. Peace Corps medical officers should continue to receive an annual refresher training on dengue clinical management.
    DOI:  https://doi.org/10.4269/ajtmh.21-0020
  18. Malar J. 2021 Apr 27. 20(1): 202
      BACKGROUND: Malaysia is on track towards malaria elimination. However, several cases of malaria still occur in the country. Contributing factors and communal aspects have noteworthy effects on any malaria elimination activities. Thus, assessing the community's knowledge, attitudes and practices (KAP) towards malaria is essential. This study was performed to evaluate KAP regarding malaria among the indigenous people (i.e. Orang Asli) in Peninsular Malaysia.METHODS: A household-based cross-sectional study was conducted in five remote villages (clusters) of Orang Asli located in the State of Kelantan, a central region of the country. Community members aged six years and above were interviewed. Demographic, socio-economic and KAP data on malaria were collected using a structured questionnaire and analysed using descriptive statistics.
    RESULTS: Overall, 536 individuals from 208 households were interviewed. Household indoor residual spraying (IRS) coverage and bed net ownership were 100% and 89.2%, respectively. A majority of respondents used mosquito bed nets every night (95.1%), but only 50.2% were aware that bed nets were used to prevent malaria. Nevertheless, almost all of the respondents (97.9%) were aware that malaria is transmitted by mosquitoes. Regarding practice for managing malaria, the most common practice adopted by the respondents was seeking treatment at the health facilities (70.9%), followed by self-purchase of medication from a local shop (12.7%), seeking treatment from a traditional healer (10.5%) and self-healing (5.9%). Concerning potential zoonotic malaria, about half of the respondents (47.2%) reported seeing monkeys from their houses and 20.1% reported entering nearby forests within the last 6 months.
    CONCLUSION: This study found that most populations living in the villages have an acceptable level of knowledge and awareness about malaria. However, positive attitudes and practices concerning managing malaria require marked improvement.
    Keywords:  Indigenous population; Knowledge; Malaria; Malaysia; Plasmodium knowlesi; and practice (KAP); attitude
    DOI:  https://doi.org/10.1186/s12936-021-03741-y
  19. BMC Public Health. 2021 Apr 27. 21(1): 807
      BACKGROUND: With the challenges that dengue fever (DF) presents to healthcare systems and societies, public health officials must determine where best to allocate scarce resources and restricted budgets. Constrained optimization (CO) helps to address some of the acknowledged limitations of conventional health economic analyses and has typically been used to identify the optimal allocation of resources across interventions subject to a variety of constraints.METHODS: A dynamic transmission model was developed to predict the number of dengue cases in Thailand at steady state. A CO was then applied to identify the optimal combination of interventions (release of Wolbachia-infected mosquitoes and paediatric vaccination) within the constraints of a fixed budget, set no higher than cost estimates of the current vector control programme, to minimize the number of dengue cases and disability-adjusted life years (DALYs) lost. Epidemiological, cost, and effectiveness data were informed by national data and the research literature. The time horizon was 10 years. Scenario analyses examined different disease management and intervention costs, budget constraints, vaccine efficacy, and optimization time horizon.
    RESULTS: Under base-case budget constraints, the optimal coverage of the two interventions to minimize dengue incidence was predicted to be nearly equal (Wolbachia 50%; paediatric vaccination 49%) with corresponding coverages under lower bound (Wolbachia 54%; paediatric vaccination 10%) and upper bound (Wolbachia 67%; paediatric vaccination 100%) budget ceilings. Scenario analyses indicated that the most impactful situations related to the costs of Wolbachia and paediatric vaccination with decreases/ increases in costs of interventions demonstrating a direct correlation with coverage (increases/ decreases) of the respective control strategies under examination.
    CONCLUSIONS: Determining the best investment strategy for dengue control requires the identification of the optimal mix of interventions to implement in order to maximize public health outcomes, often under fixed budget constraints. A CO model was developed with the objective of minimizing dengue cases (and DALYs lost) over a 10-year time horizon, within the constraints of the estimated budgets for vector control in the absence of vaccination and Wolbachia. The model provides a tool for developing estimates of optimal coverage of combined dengue control strategies that minimize dengue burden at the lowest budget.
    Keywords:  Constrained optimization; Dengue; Vaccination Wolbachia
    DOI:  https://doi.org/10.1186/s12889-021-10747-3
  20. PLoS Negl Trop Dis. 2021 Apr 28. 15(4): e0009337
      BACKGROUND: As the three major arthropod-borne viruses, dengue virus (DENV), chikungunya virus (CHIKV), and zika virus (ZIKV) are posing a growing threat to global public health and socioeconomic development. Our study aimed to systematically review the global seroprevalences of these arboviruses from existing publications.METHODS: Articles published between Jan 01, 2000 and Dec 31, 2019 in the databases of Embase, Pubmed and Web of Science were searched and collected. Countries or areas with known local presence of Aedes vector mosquitoes were included. Random effects model was utilized to estimate the pooled seroprevalences and the proportion of inapparent infection.
    RESULTS: Out of 1375, a total of 133 articles involving 176,001 subjects were included for our analysis. The pooled seroprevalences of DENV, CHIKV and ZIKV were 38%, 25% and 18%, respectively; and their corresponding proportions of inapparent infections were 80%, 40% and 50%. The South-East Asia Region had the highest seroprevalences of DENV and CHIKV, while the Region of the Americas had the highest seroprevalence of ZIKV. The seroprevalences of DENV and CHIKV were similar when comparing developed and developing countries, urban and rural areas, or among different populations. In addition, we observed a decreased global seroprevalences in the new decade (2010-2019) comparing to the decade before (2000-2009) for CHIKV. For ZIKV, the positive rates tested with the nucleic acid detection method were lower than those tested with the antibody detection method. Lastly, numerous cases of dual seropositivity for CHIKV and DENV were reported.
    CONCLUSIONS: Our results revealed a varied prevalence of arbovirus infections in different geographical regions and countries, and the inapparent infection accounted an unneglected portion of infections that requires more attention. This study will shed lights on our understanding of the true burden of arbovirus infections and promote appropriate vaccination in the future.
    DOI:  https://doi.org/10.1371/journal.pntd.0009337
  21. Malar J. 2021 Apr 26. 20(1): 199
      BACKGROUND: The aim of this study was to investigate and analyse the characteristics of malaria in Shanghai from 2010 to 2019 and to provide suggestions for areas with a similar elimination process in China in order to prompt development of strategies and interventions in the post-elimination stage.METHODS: This was a cross-sectional study exploring the malaria characteristics during 2010-2019 in Shanghai, China. Malaria data from the Infectious Diseases Information Reporting Management System (IDIRMS) between 2010 and 2012 and data from the Parasitic Diseases Information Reporting Management System (PDIRMS) between 2013 and 2019 were combined for analysis in this study.
    RESULTS: From 2010 to 2019, a total of 436 malaria cases were reported in Shanghai. Among them, 415 (95.18%) were imported from abroad, 19 (4.36%) were domestically acquired from other provinces, 1 (0.23%) case was caused by blood transfusion, and 1 (0.23%) had a long incubation. Only Plasmodium vivax was found in domestically indigenous cases; Plasmodium falciparum accounted for the largest proportion of imported cases. Domestically acquired cases were only reported in 2010-2011 and 88% occurred in June to September; no significant seasonal difference was observed for imported cases over the 10 years. No local transmission has occurred in Shanghai since 2012. The median interval from fever onset to diagnosis was 3 days. Between 2010 and 2019, among 308 foci, 33 were classified as potential transmission and dispersed in suburb areas (Minhang, Baoshan, Jiading, Pudong, Jinshan, Songjiang, Qingpu, Fengxian, and Chongming). Only Anopheles sinensis was present and the proportion of Anopheles sinensis in different species of mosquitoes under surveillance in Shanghai decreased from 2011 to 2019.
    CONCLUSIONS: Shanghai faces the challenge of malaria re-establishment caused by imported malaria in the post-elimination stage. Therefore, risk investigation and assessment should be carried out, and receptivity and susceptibility should be assessed for every point of focus. Training should be continued to strengthen facility staff capability, and multisectoral coordination and cooperation need to be conducted efficiently to maintain malaria elimination in Shanghai.
    Keywords:  Elimination; Malaria; Post-elimination; Shanghai; Surveillance
    DOI:  https://doi.org/10.1186/s12936-021-03691-5