bims-mosdis Biomed News
on Mosquito distribution and disease
Issue of 2021–09–05
twenty-two papers selected by
Richard Halfpenny, Staffordshire University



  1. Parasit Vectors. 2021 Aug 28. 14(1): 433
       BACKGROUND: The midgut microbiota of mosquitoes maintain basal immune activity and immune priming. In recent years, scientists have focused on the use of microbial communities for vector control interventions. In the present study, the midgut bacteria of larvae and adults of Aedes aegypti and Ae. albopictus were assessed using both field-collected and laboratory-reared mosquitoes from Sri Lanka.
    METHODS: Adults and larvae of Ae. aegypti and Ae. albopictus were collected from three selected areas in Gampaha Medical Officer of Health area, Gampaha District, Western Province, Sri Lanka. Bacterial colonies isolated from mosquito midgut dissections were identified by PCR amplification and sequencing of partial 16S rRNA gene fragments.
    RESULTS: Adults and larvae of Ae. aegypti and Ae. albopictus harbored 25 bacterial species. Bacillus endophyticus and Pantoea dispersa were found more frequently in field-collected Ae. aegypti and Ae. albopictus adults, respectively. The midgut bacteria of Ae. aegypti and Ae. albopictus adults (X2 = 556.167, df = 72, P < 0.001) and larvae (X2 = 633.11, df = 66, P < 0.001) were significantly different. There was a significant difference among the bacterial communities between field-collected adults (X2 = 48.974, df = 10, P < 0.001) and larvae (X2 = 84.981, df = 10, P < 0.001). Lysinibacillus sphaericus was a common species in adults and larvae of laboratory-reared Ae. aegypti. Only P. dispersa occurred in the field-collected adults of Ae. aegypti and Ae. albopictus. Species belonging to genera Terribacillus, Lysinibacillus, Agromyces and Kocuria were recorded from Aedes mosquitoes, in accordance with previously reported results.
    CONCLUSIONS: This study generated a comprehensive database on the culturable bacterial community found in the midgut of field-collected (Ae. aegypti and Ae. albopictus) and laboratory-reared (Ae. aegypti) mosquito larvae and adults from Sri Lanka. Data confirm that the midgut bacterial diversity in the studied mosquitoes varies according to species, developmental stage and strain (field vs laboratory).
    Keywords:  16S rRNA gene; Aedes; Bacteria; Diversity; Midgut; Mosquitoes
    DOI:  https://doi.org/10.1186/s13071-021-04900-5
  2. BMC Infect Dis. 2021 Aug 28. 21(1): 882
       BACKGROUND: Understanding the behaviour of local malaria vectors is essential as effectiveness of the commonly used vector-targeted malaria control tools heavily relies on behaviour of the major malaria vectors. This study was conducted to determine species composition, biting behaviour, host preference and infectivity of anopheline mosquitoes, and assess utilization of insecticide-treated nets (ITNs) in a low transmission setting in Southwest Ethiopia.
    METHODS: Adult anopheline mosquitoes were collected using human landing catches (HLCs), Centers for Disease Control and Prevention (CDC) light traps (LTs) and Pyrethrum Spray Catches (PSCs) from June 2016 to May 2018 in Kishe, Jimma Zone, Southwest Ethiopia. The anopheline mosquitoes were morphologically identified. Moreover, sub-sample of An. gambiae s.l. was identified to species using polymerase chain reaction (PCR). Circum-sporozoite proteins (CSPs) and blood meal sources of the anopheline mosquitoes were tested using enzyme-linked immunosorbent assay (ELISA). In addition, a cross-sectional survey was conducted to assess ITN utilization by the inhabitants.
    RESULTS: A total of 3659 anopheline mosquitoes comprising An. coustani complex (84.4%), An. gambiae s.l. (11.3%), and An. pharoensis and An. squamosus comprising less than 5% were collected. The anopheline mosquitoes showed marked outdoor (67%) and early evening (63%) biting behaviour. An. coustani complex and An. gambiae s.l. were predominantly zoophilic and anthropophilic, respectively. None of the sampled anopheline were CSP-positive. Most of the households (97.8%) owned at least one ITN, with modest usage by the inhabitants (73.4%). ITN usage was significantly higher among under-five children (AOR = 7.9, 95% CI: 4.41-14.03), household heads and spouses (AOR = 4.8, 95% CI: 3.0-7.59), those with sufficient access to ITNs (AOR = 1.8, 95% CI: 1.39-2.35), and who were not utilizing alternative mosquito repellents (AOR = 2.2, 95% CI: 1.58-2.99).
    CONCLUSION: The anopheline mosquito species exhibited predominantly outdoor and early evening biting activity. Household ITN coverage was high with slight gap in usage. Vector control interventions should target outdoor and early biting vectors to further suppress the local mosquito population. Moreover, sensitization of the community on consistent use of ITNs is required.
    Keywords:  Anopheline vector dynamics; Ethiopia; Human behaviour; ITNs; Residual malaria transmission
    DOI:  https://doi.org/10.1186/s12879-021-06592-9
  3. Recent Pat Biotechnol. 2021 Aug 31.
       BACKGROUND: Aedes aegypti mosquitoes transmit dengue, zika, and chikungunya viruses, neglected diseases that are considered global health challenges. Due to the lack of antiviral drugs and vaccines for these illnesses, vector control with chemical insecticides is the principal strategy for preventing their spread. However, vector populations are becoming increasingly resistant to insecticides, and the development of other control measures is therefore imperative.
    METHODS: A new insect trap (IT) was used to control Aedes aegypti. A specific light-emitting diode (LED) served as the attractant based on specific wavelength ranges (450-495, 500-550 and 570-600 nm). The IT utilized insect-attracting and killing mechanisms that included a black capture box, a suction-producing mechanism, an electric shock device and a nylon cloth device that held surviving mosquitoes, which thus died by starvation. Capture assays of twenty non-feeding females inside a cage were performed in triplicate using different LED intensities. A commercial trap (ultraviolet lamp attractant and suction system) was used as a positive control.
    RESULTS: Capture assays of A. aegypti with different intensities and LED combinations showed that the tricolored trap captured 100% of the females, followed by the Green LED 8 set, which captured 91%; in comparison, commercial traps captured approximately 25% of the insects. Although there were no significant differences between the experimental groups, the tricolored trap probably will capture more mosquito females considering the vision variation in individual females.
    CONCLUSION: We herein present a green technology-based IT that is effective, safe and successful for reducing mosquito populations, thereby preventing mosquito-borne disease spread.
    Keywords:  Aedes aegypti; Green technology insect trap; LED trap; Vector control
    DOI:  https://doi.org/10.2174/1872208315666210831152834
  4. J Chem Ecol. 2021 Aug 31.
      Adults of many mosquito species feed on plants to obtain metabolic energy and to enhance reproduction. Mosquitoes primarily rely on olfaction to locate plants and are known to respond to a range of plant volatiles. We studied the olfactory response of the yellow fever mosquito Aedes aegypti to methyl jasmonate (MeJA) and cis-jasmone (CiJA), volatile compounds originating from the octadecanoid signaling pathway that plays a key role in plant defense against herbivores. Specifically, we investigated how Ae. aegypti of different ages responded to elevated levels of CiJA in two attractive odor contexts, either derived from Lima bean plants or human skin. Aedes aegypti females landed significantly less often on a surface with CiJA and MeJA compared to the solvent control, CiJA exerting a stronger reduction in landing than MeJA. Odor context (plant or human) had no significant main effect on the olfactory responses of Ae. aegypti females to CiJA. Mosquito age significantly affected the olfactory response, older females (7-9 d) responding more strongly to elevated levels of CiJA than young females (1-3 d) in either odor context. Our results show that avoidance of CiJA by Ae. aegypti is independent of odor background, suggesting that jasmonates are inherently aversive cues to these mosquitoes. We propose that avoidance of plants with elevated levels of jasmonates is adaptive to mosquitoes to reduce the risk of encountering predators that is higher on these plants, i.e. by avoiding 'enemy-dense-space'.
    Keywords:  Aversion; DEET; Human odor; Jasmonic acid; Plant defense; Plant volatiles; Repellent
    DOI:  https://doi.org/10.1007/s10886-021-01299-2
  5. Sci Rep. 2021 Sep 02. 11(1): 17569
      The decline in malaria across Africa has been largely attributed to vector control using long-lasting insecticidal nets (LLINs). However, this intervention has prompted widespread insecticide resistance (IR) and been associated with changes in mosquito behaviour that reduce their contact with LLINs. The relative importance and rate at which IR and behavioural adaptations emerge are poorly understood. We conducted surveillance of mosquito behaviour and IR at 12 sites in Burkina Faso to assess the magnitude and temporal dynamics of insecticide, biting and resting behaviours in vectors in the 2-year period following mass LLIN distribution. Insecticide resistance was present in all vector populations and increased rapidly over the study period. In contrast, no longitudinal shifts in LLIN-avoidance behaviours (earlier or outdoor biting and resting) were detected. There was a moderate but statistically significant shift in vector species composition from Anopheles coluzzii to Anopheles gambiae which coincided with a reduction in the proportion of bites preventable by LLINs; possibly driven by between-species variation in behaviour. These findings indicate that adaptations based on insecticide resistance arise and intensify more rapidly than behavioural shifts within mosquito vectors. However, longitudinal shifts in mosquito vector species composition were evident within 2 years following a mass LLIN distribution. This ecological shift was characterized by a significant increase in the exophagic species (An. gambiae) and coincided with a predicted decline in the degree of protection expected from LLINs. Although human exposure fell through the study period due to reducing vector densities and infection rates, such ecological shifts in vector species along with insecticide resistance were likely to have eroded the efficacy of LLINs. While both adaptations impact malaria control, the rapid increase of the former indicates this strategy develops more quickly in response to selection from LLINS. However, interventions targeting both resistance strategies will be needed.
    DOI:  https://doi.org/10.1038/s41598-021-96759-w
  6. Malar J. 2021 Aug 30. 20(1): 357
       BACKGROUND: Volatile pyrethroids (VPs) are proven to reduce human-vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Therefore, experiments were conducted to determine if the efficacy of transfluthrin eave-positioned targeted insecticide (EPTI) depends on the resistance status of malaria vectors.
    METHODS: Ribbons treated with 5.25 g transfluthrin or untreated controls were used around the eaves of an experimental hut as EPTI inside a semi-field system. Mosquito strains with different levels of pyrethroid resistance were released simultaneously, recaptured by means of human landing catches (HLCs) and monitored for 24-h mortality. Technical-grade (TG) transfluthrin was used, followed by emulsifiable concentrate (EC) transfluthrin and additional mosquito strains. Generalized linear mixed models with binomial distribution were used to determine the impact of transfluthrin and mosquito strain on mosquito landing rates and 24-h mortality.
    RESULTS: EPTI treated with 5.25 g of either TG or EC transfluthrin significantly reduced HLR of all susceptible and resistant Anopheles mosquitoes (Odds Ratio (OR) ranging from 0.14 (95% Confidence Interval (CI) [0.11-0.17], P < 0.001) to 0.57, (CI [0.42-0.78] P < 0.001). Both TG and EC EPTI had less impact on landing for the resistant Anopheles arabiensis (Mbita strain) compared to the susceptible Anopheles gambiae (Ifakara strain) (OR 1.50 [95% CI 1.18-1.91] P < 0.001) and (OR 1.67 [95% CI 1.29-2.17] P < 0.001), respectively. The EC EPTI also had less impact on the resistant An. arabiensis (Kingani strain) (OR 2.29 [95% CI 1.78-2.94] P < 0.001) compared to the control however the TG EPTI was equally effective against the resistant Kingani strain and susceptible Ifakara strain (OR 1.03 [95% CI 0.82-1.32] P = 0.75). Finally the EC EPTI was equally effective against the susceptible An. gambiae (Kisumu strain) and the resistant An. gambiae (Kisumu-kdr strain) (OR 0.98 [95% CI 0.74-1.30] P = 0.90).
    CONCLUSIONS: Transfluthrin-treated EPTI could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin. At this dosage, transfluthrin EPTI cannot be used to kill exposed mosquitoes.
    Keywords:  Anopheles arabiensis; Anopheles gambiae; EPTI; Eave-positioned targeted insecticide; Pyrethroid resistance; Semi-field system; Transfluthrin; Volatile pyrethroid
    DOI:  https://doi.org/10.1186/s12936-021-03880-2
  7. J Vector Borne Dis. 2020 Jul-Sep;57(3):57(3): 234-239
       BACKGROUND & OBJECTIVES: Aedes vittatus (Bigot), an anthropophilic mosquito, plays an important role in the maintenance and transmission of yellow fever (YF), dengue (DEN), chikungunya (CHIKV) and Zika (ZIK) viruses in Africa. In India, though natural isolation of none of these viruses was reported from the mosquito, experimental studies have shown vector competence to DEN and CHIK viruses. Despite wide prevalence in India, their potential in transmitting viruses of public health importance viz., Japanese encephalitis (JEV), West Nile (WNV), Chandipura (CHPV), Chittoor (CHITV) etc., has never been investigated. The objective of the present study is to determine the vector potential of the mosquito to these viruses.
    METHODS: Mosquitoes were infected by intra-thoracic inoculation as well as by oral feeding, and growth kinetics was determined. Virus dissemination to organs was investigated by determining virus in the harvested organs on specified days' post infection (PI). Vector competence was determined by detecting the virus in saliva.
    RESULTS: Intra thoracic inoculation has shown vector competence of the mosquito to JEV, WNV, CHIV and CHPV. However, using the oral route of infection, replication was observed with only WNV, JEV and CHITV. High degree of WNV replication (6.7log TCID50/ml) with rapid dissemination to wings, legs and salivary glands was seen from 5th day PI onwards. WNV was detected in saliva with a titer of 0.7log10 TCID50/ml on 5th day PI. JEV and CHITV replicated in the mosquito yielding 3log and 4log10 TCID50/ml on 5th and 10th day PI respectively, but virus was not detected in saliva till 15th day PI.
    INTERPRETATION & CONCLUSION: From the results it is difficult to indict the mosquito as a vector of the viruses studied. However, presence of WNV in saliva of the mosquito shows its potential as a bridge vector and poses a concern especially when virulent WNV strains are circulating in the country.
    Keywords:  Aedes vittatus; Chandipura virus; Chittoor virus; Japanese encephalitis virus; West Nile virus; susceptibility; vector competence
    DOI:  https://doi.org/10.4103/0972-9062.311776
  8. Jpn J Infect Dis. 2021 Aug 31.
      From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Further, the A. albopictus EBN 201808 strain showed a same susceptibility to DENV3 as A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.
    Keywords:  Aedes albopictus; Wolbachia; dengue virus; imported dengue fever; susceptibility
    DOI:  https://doi.org/10.7883/yoken.JJID.2021.376
  9. PLoS Pathog. 2021 Sep;17(9): e1009870
      As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.
    DOI:  https://doi.org/10.1371/journal.ppat.1009870
  10. Epidemics. 2021 Aug 20. pii: S1755-4365(21)00042-6. [Epub ahead of print]37 100491
       INTRODUCTION: Zika virus (ZIKV) is primarily transmitted byAedes aegypti and Aedes albopictus mosquitoes between humans and non-human primates. Climate change may enhance virus reproduction in Aedes spp. mosquito populations, resulting in intensified ZIKV outbreaks. The study objective was to explore how an outbreak similar to the 2016 ZIKV outbreak in Brazil might unfold with projected climate change.
    METHODS: A compartmental infectious disease model that included compartments for humans and mosquitoes was developed to fit the 2016 ZIKV outbreak data from Brazil using least squares optimization. To explore the impact of climate change, published polynomial relationships between temperature and temperature-sensitive mosquito population and virus transmission parameters (mosquito mortality, development rate, and ZIKV extrinsic incubation period) were used. Projections for future outbreaks were obtained by simulating transmission with effects of projected average monthly temperatures on temperature-sensitive model parameters at each of three future time periods: 2011-2040, 2041-2070, and 2071-2100. The projected future climate was obtained from an ensemble of regional climate models (RCMs) obtained from the Co-Ordinated Regional Downscaling Experiment (CORDEX) that used Representative Concentration Pathways (RCP) with two radiative forcing values, RCP4.5 and RCP8.5. A sensitivity analysis was performed to explore the impact of temperature-dependent parameters on the model outcomes.
    RESULTS: Climate change scenarios impacted the model outcomes, including the peak clinical case incidence, cumulative clinical case incidence, time to peak incidence, and the duration of the ZIKV outbreak. Comparing 2070-2100 to 2016, using RCP4.5, the peak incidence was 22,030 compared to 10,473; the time to epidemic peak was 12 compared to 9 weeks, and the outbreak duration was 52 compared to 41 weeks. Comparing 2070-2100 to 2016, using RCP8.5, the peak incidence was 21,786 compared to 10,473; the time to epidemic peak was 11 compared to 9 weeks, and the outbreak duration was 50 compared to 41weeks. The increases are due to optimal climate conditions for mosquitoes, with the mean temperature reaching 28 °C in the warmest months. Under a high emission scenario (RCP8.5), mean temperatures extend above optimal for mosquito survival in the warmest months.
    CONCLUSION: Outbreaks of ZIKV in locations similar to Brazil are expected to be more intense with a warming climate. As climate change impacts are becoming increasingly apparent on human health, it is important to quantify the effect and use this knowledge to inform decisions on prevention and control strategies.
    Keywords:  Climate change; Infectious disease model; Mosquito-borne disease; Zika
    DOI:  https://doi.org/10.1016/j.epidem.2021.100491
  11. Microb Genom. 2021 Sep;7(9):
      Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1-7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.
    Keywords:  Aedes aegypti; Wolbachia; genome evolution
    DOI:  https://doi.org/10.1099/mgen.0.000641
  12. Biol Invasions. 2021 Aug 25. 1-16
      Aedes aegypti (Linnaeus) was once highly prevalent across eastern Australia, resulting in epidemics of dengue fever. Drought conditions have led to a rapid rise in semi-permanent, urban water storage containers called rainwater tanks known to be critical larval habitat for the species. The presence of these larval habitats has increased the risk of establishment of highly urbanised, invasive mosquito vectors such as Ae. aegypti. Here we use a spatially explicit network model to examine the role that unsealed rainwater tanks may play in population connectivity of an Ae. aegypti invasion in suburbs of Brisbane, a major Australian city. We characterise movement between rainwater tanks as a diffusion-like process, limited by a maximum distance of movement, average life expectancy, and a probability that Ae. aegypti will cross wide open spaces such as roads. The simulation model was run against a number of scenarios that examined population spread through the rainwater tank network based on non-compliance rates of tanks (unsealed or sealed) and road grids. We show that Ae. aegypti tank infestation and population spread was greatest in areas of high tank density and road lengths were shortest e.g. cul-de-sacs. Rainwater tank non-compliance rates of over 30% show increased connectivity when compared to less than 10%, suggesting rainwater tanks non-compliance should be maintained under this level to minimize the spread of an invading Ae. aegypti population. These results presented as risk maps of Ae. aegypti spread across Brisbane, can assist health and government authorities on where to optimally target rainwater tank surveillance and educational activities.
    Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-021-02619-z.
    Keywords:  Aedes aegypti; Invasion simulation; Network model; Population spread; Water storage
    DOI:  https://doi.org/10.1007/s10530-021-02619-z
  13. J Med Entomol. 2021 Sep 03. pii: tjab154. [Epub ahead of print]
      Mosquitoes (Diptera: Culicidae) are considered the group of insects that most impacts human health. Land use change, conversion of conserved sites into agricultural environments, urbanization, defaunation, and introduction of domestic animals can affect mosquito diversity positively or negatively, increasing the risk of transmission of zoonotic diseases. Here, we describe the diversity of adult mosquitoes in two environments (deciduous forest and anthropized zone) over 2 yr (2014-2016), using eight CDC traps at each site in three climatic seasons (rainy, cold, and dry). We captured 795 individuals belonging to 22 species. We constructed rank-abundance curves to determine spatial and temporal changes in the mosquito communities. We measured alpha diversity using the Shannon index (H'), Shannon exponential (eH) and Simpson dominance (Ds), and beta diversity using Jaccard's coefficient of similarity (Ij). The most abundant species were Culex quinquefasciatus (40.5%), Culex coronator (18.3%), and Anopheles pseudopunctipennis (12.4%). The highest mosquito diversity was in the deciduous forest during the rainy season. Beta diversity analysis showed that species overlap varied among climatic seasons, with the sites sharing 65% species during the rainy season, but only 33% of species during the dry season. We found differences in the diversity of mosquitoes at the two sites, and the mosquito assemblage of the anthropized zone was significantly different from that of the deciduous forest.
    Keywords:  Culicidae; Puebla; anthropized zone; deciduous forest; diversity
    DOI:  https://doi.org/10.1093/jme/tjab154
  14. Malar J. 2021 Aug 30. 20(1): 358
       BACKGROUND: Indoor Residual Spray (IRS) against vector mosquitoes is a primary means for combating malaria transmission. To combat increased patterns of resistance to chemicals against mosquito vectors, alternative candidate insecticide formulations should be screened. With mortality as the primary endpoint, the persistence of residual efficacy of a polymer-enhanced pyrethroid suspension concentrate containing deltamethrin (K-Othrine® PolyZone-KOPZ) applied at 25 mg active ingredient (ai)/m2 was compared with a microencapsulated organophosphate suspension formulation of pirimiphos-methyl (Actellic® 300CS-ACS) applied at 1 g ai/m2.
    METHODS: Following standard spray application, periodic contact bioassays were conducted for at least 38 weeks on four types of wall surfaces (unbaked clay, baked clay, cement, and painted cement) sprayed with either KOPZ or ACS in simulated semi-field conditions. Similarly, two types of existing walls in occupied houses (painted cement and baked clay) were sprayed and examined. A colonized strain of female Anopheles arabiensis mosquitoes were exposed to treated or untreated surfaces (controls) for 30 min. For each wall surface test period, 40 treatment mosquitoes (4 cones × 10) in semi-field and 90 (9 cones × 10) in 'natural' house conditions were used per wall. 30 mosquitoes (3 cones × 10) on a matching unsprayed surface served as the control. Insecticide, wall material, and sprayed location on wall (in houses) were compared by final mortality at 24 h.
    RESULTS: Insecticide, wall material, and sprayed location on wall surface produced significant difference for mean final mortality over time. In semi-field conditions, KOPZ produced a 72% mean mortality over a 38-week period, while ACS gave 65% (p < 0.001). Painted cement wall performed better than other wall surfaces throughout the study period (73% mean mortality). In the two occupied houses, KOPZ provided a mean mortality of 88%, significantly higher than ACS (p < 0.001). KOPZ provided an effective residual life (≥ 80% mortality) between 7.3 and 14 weeks on experimental walls and between 18.3 and 47.2 weeks in houses, while ACS persisted between 3 and 7.6 weeks under semi-field conditions and between 7.1 and 17.3 weeks in houses. Household painted cement walls provided a longer effective residual activity compared to baked clay for both formulations. Greater mortality was recorded at the top and middle sections of sprayed wall compared to the bottom portion near the floor.
    CONCLUSION: KOPZ provided longer residual activity on all surfaces compared to ACS. Painted cement walls provided better residual longevity for both insecticides compared to other surfaces. Insecticides also performed better in an occupied house environment compared to semi-field constructed walls. This study illustrates the importance of collecting field-based observations to determine appropriate product active ingredient formulations and timing for recurring IRS cycles.
    Keywords:  Deltamethrin; Democratic Republic of the Congo; Pirimiphos-methyl; Residual efficacy
    DOI:  https://doi.org/10.1186/s12936-021-03892-y
  15. Trop Med Int Health. 2021 Aug 29.
       OBJECTIVE: Recent research on mosquito vector-borne diseases points to the possibility for a re-emergence of yellow fever. This study investigated attempts at utilizing environmental methods and their efficacy for the control of yellow fever and its main vector, Aedes aegypti.
    METHODS: Potentially eligible studies were searched in Cochrane Library (Reviews and Trials), the Global Index Medicus (encompassing thus the African Index Medicus, the Index Medicus for the Eastern Mediterranean Region, the Index Medicus for the South-East Asia Region, the Latin America and the Caribbean Literature on Health Sciences, and the Western Pacific Region Index Medicus), Google Scholar, PubMed, and Science Direct.
    RESULTS: Of a total number of 172 eligible studies, 20 met the pre-defined inclusion criteria. Two of them provided quantitative assessment on the efficacy of the described water management and house screening methods with a reduction of cases of 98%, and of a reduction of larvae of 100%, respectively. The remaining 18 studies described or recommended the elimination of breeding sites (through water or waste management, unspecified, or house destruction), the use of screens for houses, and the improvement of air circulation without providing any data to evidence control effectiveness.
    CONCLUSION: This systematic review provides evidence on the historical use and the perceived effectiveness of environmental management methods for combatting yellow fever. However, these methods would benefit from further investigation via controlled trials to provide data for efficacy, costs, acceptability, and feasibility.
    Keywords:  Yellow fever; environmental policy; history; mosquito control; prevention & control; systematic review
    DOI:  https://doi.org/10.1111/tmi.13674
  16. Parasit Vectors. 2021 Aug 28. 14(1): 434
       BACKGROUND: Aedes vigilax is one of the most significant arbovirus vector and pest species in Australia's coastal regions. Occurring in multiple countries, this mosquito species occurs as a species complex which has been separated into three clades with two detected in Australia. Until recently, Ae. vigilax has largely been absent from Victoria, only occasionally caught over the years, with no reported detections from 2010 to 2016. Complicating the detection of Ae. vigilax is the shared sympatric distribution to the morphologically similar Ae. camptorhynchus, which can exceed 10,000 mosquitoes in a single trap night in Victoria. Currently, there are no molecular assays available for the detection of Ae. vigilax. We aim to develop a quantitative PCR (qPCR) for the detection of Ae. vigilax, with the specificity and sensitivity of this assay assessed as well as a method to process whole mosquito traps.
    METHODS: Trapping was performed during the 2017-2020 mosquito season in Victoria in two coastal areas across these 3 consecutive years. A qPCR assay was designed to allow rapid identification of Ae. vigilax as well as a whole mosquito trap homogenizing and processing methodology. Phylogenetic analysis was performed to determine which clade Ae. vigilax from Victoria was closest to.
    RESULTS: Aedes vigilax was successfully detected each year across two coastal areas of Victoria, confirming the presence of this species. The qPCR assay was proven to be sensitive and specific to Ae. vigilax, with trap sizes up to 1000 mosquitoes showing no inhibition in detection sensitivity. Phylogenetic analysis revealed that Ae. vigilax from Victoria is associated with clade III, showing high sequence similarity to those previously collected in New South Wales, Queensland and Western Australia.
    CONCLUSIONS: Aedes vigilax is a significant vector species that shares an overlapping distribution to the morphologically similar Ae. camptorhynchus, making detection difficult. Here, we have outlined the implementation of a specific and sensitive molecular screening assay coupled with a method to process samples for detection of Ae. vigilax in collections with large numbers of non-target species.
    Keywords:  Aedes vigilax; Phylogenetics; Whole trap processing; qPCR
    DOI:  https://doi.org/10.1186/s13071-021-04923-y
  17. Parasit Vectors. 2021 Sep 03. 14(1): 445
       BACKGROUND: Larvicides are typically applied to fixed and findable mosquito breeding sites, such as fish farming ponds used in commercial aquaculture, to kill immature forms and thereby reduce the size of adult malaria vector populations. However, there is little evidence suggesting that larviciding may suppress community-wide malaria transmission outside Africa. Here, we tested whether the biological larvicide VectoMax FG applied at monthly intervals to fish farming ponds can reduce malaria incidence in Amazonian Brazil.
    METHODS: This study was carried out in Vila Assis Brasil (VAB; population 1700), a peri-urban malaria hotspot in northwestern Brazil with a baseline annual parasite incidence of 553 malaria cases per 1000 inhabitants. The intervention consisted of monthly treatments with 20 kg/ha of VectoMax FG of all water-filled fish ponds in VAB (n ranging between 167 and 170) with a surface area between 20 and 8000 m2, using knapsack power mistblowers. We used single-group interrupted time-series analysis to compare monthly larval density measurements in fish ponds during a 14-month pre-intervention period (September 2017-October 2018), with measurements made during November 2018-October 2019 and shortly after the 12-month intervention (November 2019). We used interrupted time-series analysis with a comparison group to contrast the malaria incidence trends in VAB and nearby nonintervention localities before and during the intervention.
    RESULTS: Average larval densities decreased tenfold in treated fish farming ponds, from 0.467 (95% confidence interval [CI], 0.444-0.490) anopheline larvae per dip pre-intervention (September 2017-October 2018) to 0.046 (95% CI, 0.041-0.051) larvae per dip during (November 2018-October 2019) and shortly after the intervention (November 2019). Average malaria incidence rates decreased by 0.08 (95% CI, 0.04-0.11) cases per 100 person-months (P < 0.0001) during the intervention in VAB and remained nearly unchanged in comparison localities. We estimate that the intervention averted 24.5 (95% CI, 6.2-42.8) malaria cases in VAB between January and December 2019.
    CONCLUSIONS: Regular larviciding is associated with a dramatic decrease in larval density and a modest but significant decrease in community-wide malaria incidence. Larviciding may provide a valuable complementary vector control strategy in commercial aquaculture settings across the Amazon.
    Keywords:  Amazon; Anopheles; Biological larvicides; Fish farming; Malaria
    DOI:  https://doi.org/10.1186/s13071-021-04964-3
  18. Malar J. 2021 Aug 28. 20(1): 354
       BACKGROUND: Changes in social, belief, and behavioural practices are essential for the success of any public health delivery programme. In the planning stages of the Malaria Elimination Demonstration Project (MEDP), priority was given to communication with a goal to develop capacity of health workers and to improve the knowledge, attitude and practices (KAP) of the people of Mandla. This paper describes the level of community knowledge on malaria, including its prevention, diagnosis, treatment-seeking behaviour, and the level of satisfaction with the services provided by the project.
    METHODS: A cross sectional survey was undertaken in 1233 villages of Mandla to study the KAP and self-assessed improvement in knowledge and satisfaction level of the community. The goal of the study was to understand whether there is need for strengthening communication strategy of MEDP for better impact. The survey was conducted amongst the head/eligible members of the 733 households located in the nine blocks of the district using clustered random sampling.
    RESULTS: Though four-fifths of the respondents were able to correlate the transmission of malaria with mosquitoes, misconceptions existed among them. The types of malaria were not known to everyone. Only 39% were aware of the Indoor Residual Spray (IRS) and 41% understood the value of Long-Lasting Insecticidal Nets (LLIN). Around 71% of subjects surveyed were aware of the proper diagnostic tests for malaria. A total of 87% of the respondents knew about the MEDP staff working in their respective villages.
    CONCLUSION: The study reported gaps in knowledge on malaria at community level. The self-assessment of the community revealed that the communication strategy established by MEDP in Mandla district has been useful to them as they are becoming better informed about the prevention and treatment aspects of disease. The lessons learned as revealed in the KAP survey will improve malaria elimination outcomes in a timely manner.
    DOI:  https://doi.org/10.1186/s12936-021-03884-y
  19. Malar J. 2021 Aug 30. 20(1): 359
       BACKGROUND: Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination.
    METHODS: Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates.
    RESULTS: The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates.
    CONCLUSIONS: The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.
    Keywords:  Human mobility; Human travel; Malaria connectivity; Malaria importation; Mathematical modelling
    DOI:  https://doi.org/10.1186/s12936-021-03893-x
  20. BMC Infect Dis. 2021 Aug 28. 21(1): 881
    Mexican Emerging Infectious Diseases Clinical Research Network (La Red)
       BACKGROUND: The introduction of Zika and chikungunya to dengue hyperendemic regions increased interest in better understanding characteristics of these infections. We conducted a cohort study in Mexico to evaluate the natural history of Zika infection. We describe here the frequency of Zika, chikungunya and dengue virus infections immediately after Zika introduction in Mexico, and baseline characteristics of participants for each type of infection.
    METHODS: Prospective, observational cohort evaluating the natural history of Zika virus infection in the Mexico-Guatemala border area. Patients with fever, rash or both, meeting the modified criteria of PAHO for probable Zika cases were enrolled (June 2016-July 2018) and followed-up for 6 months. We collected data on sociodemographic, environmental exposure, clinical and laboratory characteristics. Diagnosis was established based on viral RNA identification in serum and urine samples using RT-PCR for Zika, chikungunya, and dengue. We describe the baseline sociodemographic and environmental exposure characteristics of participants according to diagnosis, and the frequency of these infections over a two-year period immediately after Zika introduction in Mexico.
    RESULTS: We enrolled 427 participants. Most patients (n = 307, 65.7%) had an acute illness episode with no identified pathogen (UIE), 37 (8%) Zika, 82 (17.6%) dengue, and 1 (0.2%) chikungunya. In 2016 Zika predominated, declined in 2017 and disappeared in 2018; while dengue increased after 2017. Patients with dengue were more likely to be men, younger, and with lower education than those with Zika and UIE. They also reported closer contact with water sources, and with other people diagnosed with dengue. Participants with Zika reported sexual exposure more frequently than people with dengue and UIE. Zika was more likely to be identified in urine while dengue was more likely found in blood in the first seven days of symptoms; but PCR results for both were similar at day 7-14 after symptom onset.
    CONCLUSIONS: During the first 2 years of Zika introduction to this dengue hyper-endemic region, frequency of Zika peaked and fell over a two-year period; while dengue progressively increased with a predominance in 2018. Different epidemiologic patterns between Zika, dengue and UIE were observed. Trial registration Clinical.Trials.gov (NCT02831699).
    Keywords:  Chikungunya; Dengue; Emerging diseases; Mexico; Outbreak; Zika
    DOI:  https://doi.org/10.1186/s12879-021-06520-x
  21. Wellcome Open Res. 2021 ;6 75
      Introduction: According to the World Malaria Report 2019, Africa accounts for 94% of the global malaria deaths. While malaria prevalence and mortality have declined over the years, recent reports suggest that these gains may stand the risk of being reversed if resistance to Artemisinin Combination Therapies (ACTs) spreads from Southeast Asia to Africa. Efforts are being made to develop new treatments that will address the looming threat of ACT resistance, including the development of triple artemisinin combination therapies (TACTs). The proposed study seeks to explore the views of stakeholders on the key ethical, regulatory and market-related issues that should be considered in the potential introduction of triple artemisinin combination therapies (TACTs) in Africa. Methods: The study employed qualitative research methods involving in-depth interviews and focus group discussions (FGDs) with stakeholders, who will be directly affected by the potential deployment of triple artemisinin combination treatments, as regulators, suppliers and end-users. Participants will be purposively selected and will include national regulatory authorities, national malaria control programs, clinicians, distributors and retailers as well as community members in selected districts in Burkina Faso and Nigeria. Discussion: The proposed study is unique in being one of the first studies that seeks to understand the ethical, social, regulatory and market position issues prior to the development of a prospective antimalarial medicine.
    Keywords:  Africa; Malaria; drug resistance; ethics
    DOI:  https://doi.org/10.12688/wellcomeopenres.16065.1
  22. Travel Med Infect Dis. 2021 Aug 27. pii: S1477-8939(21)00190-3. [Epub ahead of print]44 102149
       BACKGROUND: Studies have shown that human mobility is an important factor in dengue epidemiology. Changes in mobility resulting from COVID-19 pandemic set up a real-life situation to test this hypothesis. Our objective was to evaluate the effect of reduced mobility due to this pandemic in the occurrence of dengue in the state of São Paulo, Brazil.
    METHOD: It is an ecological study of time series, developed between January and August 2020. We use the number of confirmed dengue cases and residential mobility, on a daily basis, from secondary information sources. Mobility was represented by the daily percentage variation of residential population isolation, obtained from the Google database. We modeled the relationship between dengue occurrence and social distancing by negative binomial regression, adjusted for seasonality. We represent the social distancing dichotomously (isolation versus no isolation) and consider lag for isolation from the dates of occurrence of dengue.
    RESULTS: The risk of dengue decreased around 9.1% (95% CI: 14.2 to 3.7) in the presence of isolation, considering a delay of 20 days between the degree of isolation and the dengue first symptoms.
    CONCLUSIONS: We have shown that mobility can play an important role in the epidemiology of dengue and should be considered in surveillance and control activities.
    Keywords:  COVID-19; Control; Dengue; Mobility; Surveillance
    DOI:  https://doi.org/10.1016/j.tmaid.2021.102149