Lancet Reg Health Am. 2022 Jul;11 100231
Heather Coatsworth,
Catherine A Lippi,
Chalmers Vasquez,
Jasmine B Ayers,
Caroline J Stephenson,
Christy Waits,
Mary Florez,
André B B Wilke,
Isik Unlu,
Johana Medina,
Sadie J Ryan,
John A Lednicky,
John C Beier,
William Petrie,
Rhoel R Dinglasan.
Background: Simultaneous dengue virus (DENV) and West Nile virus (WNV) outbreaks in Florida, USA, in 2020 resulted in 71 dengue virus serotype 1 and 86 WNV human cases. We hypothesized that we would find a number of DENV-1 positive mosquito pools, and that the distribution of these arbovirus-positive mosquito pools would be associated with those neighborhoods for which imported DENV cases have been recently reported in 2019 and 2020.
Methods: We collected and screened Aedes aegypti, Ae. albopictus, Anopheles crucians, Culex coronator, Cx. nigripalpus, and Cx. quinquefasciatus mosquitoes from Miami-Dade County (Florida) for DENV and WNV by rRT-qPCR. Spatial statistical analyses were performed to capture positive mosquito pool distribution in relation to land use, human demography, environmental variables, mosquito trap placement and reported human travel associated DENV cases to guide future mosquito control outbreak responses.
Findings: A rapid screen of 7,668 mosquitoes detected four DENV serotype 2 (DENV-2), nine DENV-4 and nine WNV-positive mosquito pools, which enabled swift and targeted abatement of trap sites by mosquito control. As expected, DENV-positive pools were in urban areas; however, we found WNV-positive mosquito pools in agricultural and recreational areas with no historical reports of WNV transmission.
Interpretation: These findings demonstrate the importance of proactive arbovirus surveillance in mosquito populations to prevent and control outbreaks, particularly when other illnesses (e.g., COVID-19), which present with similar symptoms, are circulating concurrently. Growing evidence for substantial infection prevalence of dengue in mosquitoes in the absence of local index cases suggests a higher level of dengue endemicity in Florida than previously thought.
Funding: This research was supported in part by U.S. Centers for Disease Control and Prevention (CDC) grant 1U01CK000510-03, Southeastern Regional Center of Excellence in Vector Borne Diseases Gateway Program.
Keywords: Arboviruses; COVID-19; Dengue virus; Disease outbreaks; Disease vectors; West Nile virus