FEBS Open Bio. 2021 Dec 30.
Cisplatin (DDP)-based chemotherapy is a preferred treatment for a broad spectrum of cancers, but the precise mechanisms of its hepatotoxicity are not yet clear. Recently, the role of voltage-dependent anion channel protein 1 (VDAC1) in mitochondrial activity and cell apoptosis has attracted much attention. Our aim was to investigate the effects of mitochondrial outer membrane protein VDAC1 oligomerization in DDP-induced hepatocyte apoptosis. L-02 hepatocytes were divided into 4 groups: (1) control group, (2) 4,4'diisothiocyanate-2,2'-disulfonic acid (DIDS; 40 μM) group, (3) DDP (5μM) group, (4) DDP and DIDS combination group. Cell apoptosis was tested by annexin V/fluorescein isothiocyanate (FITC) assay, protein expression of caspase-3, γH2AX and NDUFB6 were observed by western blot assay, reactive oxygen species (ROS) and mitochondrial superoxide anion radical (O2 •- ) were detected by DCFH-DA and MitoSOX probe, and DNA damage was assessed by comet assay. Moreover, the activity of mitochondrial respiratory chain complex I was determined by the colorimetry method. Compared with the control group, apoptosis rate and activated cleaved-caspase-3 protein, ROS and O2 •- generation, DNA damage marker comet tail length and γH2AX protein level increased in the DDP treatment group (P<0.05). Activity of mitochondrial COXI decreased after DDP treatment (P<0.05). DIDS, as a VDAC1 oligomerization inhibitor, antagonized DDP-induced apoptosis by diminishing oxidative stress and DNA damage, and protecting mitochondrial complex protein. These results show that VDAC1 oligomerization may play an important role in DDP-induced hepatocyte apoptosis by increasing ROS and mitochondrial DNA (mtDNA) leakage from VDAC1 pores, exacerbating oxidative stress and mtDNA damage.
Keywords: 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid; apoptosis; cisplatin; hepatocyte; oligomerization; voltage-dependent anion channel 1