bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2022–01–30
ten papers selected by
Marco Tigano, Thomas Jefferson University



  1. iScience. 2022 Jan 21. 25(1): 103715
      Mitochondrial dysfunction causes muscle wasting in many diseases and probably also during aging. The underlying mechanism is poorly understood. We generated transgenic mice with unbalanced mitochondrial protein loading and import, by moderately overexpressing the nuclear-encoded adenine nucleotide translocase, Ant1. We found that these mice progressively lose skeletal muscle. Ant1-overloading reduces mitochondrial respiration. Interestingly, it also induces small heat shock proteins and aggresome-like structures in the cytosol, suggesting increased proteostatic burden due to accumulation of unimported mitochondrial preproteins. The transcriptome of Ant1-transgenic muscles is drastically remodeled to counteract proteostatic stress, by repressing protein synthesis and promoting proteasomal function, autophagy, and lysosomal amplification. These proteostatic adaptations collectively reduce protein content thereby reducing myofiber size and muscle mass. Thus, muscle wasting can occur as a trade-off of adaptation to mitochondria-induced proteostatic stress. This finding could have implications for understanding the mechanism of muscle wasting, especially in diseases associated with Ant1 overexpression, including facioscapulohumeral dystrophy.
    Keywords:  Biological sciences; Cell biology; Cellular physiology; Functional aspects of cell biology
    DOI:  https://doi.org/10.1016/j.isci.2021.103715
  2. Hum Mol Genet. 2022 Jan 24. pii: ddac013. [Epub ahead of print]
      Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multi-omics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial over-activation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.
    DOI:  https://doi.org/10.1093/hmg/ddac013
  3. Plant Cell. 2022 Jan 25. pii: koac017. [Epub ahead of print]
      Redox processes are at the heart of universal life processes, such as metabolism, signaling or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting endoplasmic reticulum oxidoreductin (ERO) capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered NAD reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor ANAC017 impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
    DOI:  https://doi.org/10.1093/plcell/koac017
  4. Cell Rep. 2022 Jan 25. pii: S2211-1247(21)01805-2. [Epub ahead of print]38(4): 110290
      Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth.
    Keywords:  ATP synthase; MICOS; Mic10; cristae organization; inner membrane; membrane architecture; membrane potential; metabolic adaptation; mitochondria; respiration
    DOI:  https://doi.org/10.1016/j.celrep.2021.110290
  5. J Biophotonics. 2022 Jan 24. e202200006
      Mitochondrion is one of significant organelles inside cells because it serves as a hub for energy management and intracellular signaling. Internal/external damages on mitochondria would lead to mitochondrial stresses with the malfunctions, accompanying with the changes of morphological structure and abnormal local environments (pH values). Mitophagy is capable of degradation of damaged mitochondrial segments to restore its normal metabolism, dynamics, and biogenesis. The dynamic structural visualization and pH quantification can be helpful for the understanding of mitochondrial functions as well as the diagnosis of disorders linking with this process. In this work, we use confocal laser scanning microscopy, STED super-resolution nanoscopy and fluorescence lifetime imaging microscopy, in conjunction with a mitochondrial probe to image the dynamic changes in the mitochondrial morphology and microenvironmental pH values during mitophagy in live cells, in particular, the structural changes of mitochondrial cristae beyond optical diffraction can be distinguished by STED nanoscopy with/without treatment by CCCP, which will provide a new view for the diagnosis and personalized treatment of mitochondrial dysfunction-related diseases. This article is protected by copyright. All rights reserved.
    Keywords:  confocal laser scanning microscopy; fluorescence lifetime imaging microscopy; microenvironment; mitophagy; stimulated emission depletion
    DOI:  https://doi.org/10.1002/jbio.202200006
  6. Stem Cell Res Ther. 2022 Jan 24. 13(1): 30
       BACKGROUND: Transplantation of human pluripotent stem cell-derived retinal pigment epithelium (RPE) is an urgently needed treatment for the cure of degenerative diseases of the retina. The transplanted cells must tolerate cellular stress caused by various sources such as retinal inflammation and regain their functions rapidly after the transplantation. We have previously shown the maturation level of the cultured human embryonic stem cell-derived RPE (hESC-RPE) cells to influence for example their calcium (Ca2+) signaling properties. Yet, no comparison of the ability of hESC-RPE at different maturity levels to tolerate cellular stress has been reported.
    METHODS: Here, we analyzed the ability of the hESC-RPE populations with early (3 weeks) and late (12 weeks) maturation status to tolerate cellular stress caused by chemical cell stressors protease inhibitor (MG132) or hydrogen peroxide (H2O2). After the treatments, the functionality of the RPE cells was studied by transepithelial resistance, immunostainings of key RPE proteins, phagocytosis, mitochondrial membrane potential, Ca2+ signaling, and cytokine secretion.
    RESULTS: The hESC-RPE population with late maturation status consistently showed improved tolerance to cellular stress in comparison to the population with early maturity. After the treatments, the early maturation status of hESC-RPE monolayer showed impaired barrier properties. The hESC-RPE with early maturity status also exhibited reduced phagocytic and Ca2+ signaling properties, especially after MG132 treatment.
    CONCLUSIONS: Our results suggest that due to better tolerance to cellular stress, the late maturation status of hESC-RPE population is superior compared to monolayers with early maturation status in the transplantation therapy settings.
    Keywords:  Cell therapy; Human pluripotent stem cells; Oxidative stress; Retinal pigment epithelial cells
    DOI:  https://doi.org/10.1186/s13287-022-02712-7
  7. Cell Rep. 2022 Jan 25. pii: S2211-1247(21)01801-5. [Epub ahead of print]38(4): 110286
      Selective autophagy is a catabolic route that turns over specific cellular material for degradation by lysosomes, and whose role in the regulation of innate immunity is largely unexplored. Here, we show that the apical kinase of the Drosophila immune deficiency (IMD) pathway Tak1, as well as its co-activator Tab2, are both selective autophagy substrates that interact with the autophagy protein Atg8a. We also present a role for the Atg8a-interacting protein Sh3px1 in the downregulation of the IMD pathway, by facilitating targeting of the Tak1/Tab2 complex to the autophagy platform through its interaction with Tab2. Our findings show the Tak1/Tab2/Sh3px1 interactions with Atg8a mediate the removal of the Tak1/Tab2 signaling complex by selective autophagy. This in turn prevents constitutive activation of the IMD pathway in Drosophila. This study provides mechanistic insight on the regulation of innate immune responses by selective autophagy.
    Keywords:  Drosophila; IMD; Sh3px1; Tab2; Tak1; autophagy; chronic inflammation; innate immunity
    DOI:  https://doi.org/10.1016/j.celrep.2021.110286
  8. J Biochem. 2022 Jan 26. pii: mvab156. [Epub ahead of print]
      Stress response is important for sensing and adapting to environmental changes. Recently, RNA-protein condensates, which are a type of membrane-less organelle formed by liquid-liquid phase separation, have been proposed to regulate the stress response. Because RNA-protein condensates are formed through interactions between positively charged proteins and negatively charged RNAs, the ratio of proteins to RNAs is critical for phase-separated condensate formation. In particular, long noncoding RNAs (lncRNAs) can efficiently nucleate phase-separated RNA-protein condensates because of their secondary structure and long length. Therefore, increased attention has been paid to lncRNAs because of their potential role as a regulator of biological condensates by phase separation under stress response. In this review, we summarize the current research on the involvement of lncRNAs in the formation of RNA-protein condensates under stress response. We also demonstrate that lncRNA-driven phase separation provides a useful basis to understanding the response to several kinds of cellular stresses.
    Keywords:  Long noncoding RNA; RNA-binding protein; RNA-protein condensate; phase separation; stress response
    DOI:  https://doi.org/10.1093/jb/mvab156
  9. Front Immunol. 2021 ;12 794580
      Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
    Keywords:  endoplasmic reticulum stress; inflammatory response; neurological diseases; neuronal death; proteostasis; unfolded protein response
    DOI:  https://doi.org/10.3389/fimmu.2021.794580
  10. J Neurol. 2022 Jan 28.
       BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous disorder caused by mitochondrial DNA (mtDNA) mutations in the MT-TL1 gene. The pathophysiology of neurological manifestations is still unclear, but neuronal hyperexcitability and neuron-astrocyte uncoupling have been suggested. Glutamatergic neurotransmission is linked to glucose oxidation and mitochondrial metabolism in astrocytes and neurons. Given the relevance of neuron-astrocyte metabolic coupling and astrocyte function regulating energetic metabolism, we aimed to assess glutamate and glutamine CSF levels in MELAS patients.
    METHODS: This prospective observational case-control study determined glutamate and glutamine CSF levels in patients with MELAS syndrome and compared them with controls. The plasma and CSF levels of the remaining amino acids and lactate were also determined.
    RESULTS: Nine adult patients with MELAS syndrome (66.7% females mean age 35.8 ± 3.2 years) and 19 controls (63.2% females mean age 42.7 ± 3.8 years) were included. The CSF glutamate levels were significantly higher in patients with MELAS than in controls (18.48 ± 1.34 vs. 5.31 ± 1.09 μmol/L, p < 0.001). Significantly lower glutamine concentrations in patients with MELAS than controls were shown in CSF (336.31 ± 12.92 vs. 407.06 ± 15.74 μmol/L, p = 0.017). Moreover, the CSF levels of alanine, the branched-chain amino acids (BCAAs) and lactate were significantly higher in patients with MELAS.
    CONCLUSIONS: Our results suggest the glutamate-glutamine cycle is altered probably due to metabolic imbalance, and as a result, the lactate-alanine and BCAA-glutamate cycles are upregulated. These findings might have therapeutic implications in MELAS syndrome.
    Keywords:  Branched-chain amino acids; Glutamate; Glutamine; MELAS; Mitochondrial disease
    DOI:  https://doi.org/10.1007/s00415-021-10942-7