Heliyon. 2022 Dec;8(12): e12468
Objective: This study aimed to address the status, role, and mechanism of sympathetic nerve infiltration in the progression of stomach adenocarcinoma (STAD).
Methods: Sympathetic nerve and its neurotransmitter NE, β-ARs, and associated signaling molecules in the STAD tissues and the adjacent tissues from 46 STAD patients were examined using immunostaining, HPLC, and western blotting. The effects and mechanisms of β2-AR activation on the proliferation, migration and invasion of AGS and SGC-7901 gastric cancer (GC) cell lines were examined using CCK-8, transwell, and western blotting assays. Correlations between genes and STAD survival were analyzed using bioinformatics.
Results: Striking sympathetic nerve infiltration, elevations of NGF, TrkA, GAP43, TH, S100, NE, β2-AR, YKL-40, syndecan-1, MMP9, CD206, and CD31 were observed in the STAD tissues compared to the adjacent tissues. Activation of β2-AR in the two GC cell lines significantly amplified the expressions of NGF, YKL-40, MMP9, syndecan-1, p-STAT3 and p-ERK, and increased GC cell proliferation, migration and invasion. Bioinformatic analyses revealed positive correlations of NGF, β2-AR, syndecan-1, and macrophage infiltration, respectively, with low survival of STAD, of β2-AR respectively with STAT3, ERK1/2 (MAPK1/3), YKL-40, MMP9, and syndecan-1, and of YKL-40 with MMP9.
Conclusion: Sympathetic nerves significantly infiltrated into human STAD tissues as a result of high NGF and TrkA expressions; elevated NE led to overactivation of β2-AR-STAT3/ERK-YKL-40 signaling pathway, and finally caused cancer cell growth and invasion, M2 macrophage infiltration, angiogenesis, matrix degradation and STAD metastasis and progression.
Keywords: Catecholamine; Gastric cancer; Sympathetic nerve; YKL-40; β-adrenoceptor