J Clin Invest. 2022 Dec 13. pii: e156722. [Epub ahead of print]
Leptin exerts its biological actions by activating LepRb. LepRb signaling impairment and leptin resistance are believed to cause obesity. Transcription factor Slug (also known as Snai2) recruits epigenetic modifiers and regulates gene expression by an epigenetic mechanism; however, its epigenetic action has not been explored in leptin resistance. Here, we uncover a pro-obesity function of neuronal Slug. Hypothalamic Slug was upregulated in obese mice. LepRb cell-specific Slug knockout (SlugΔLepRb) mice were resistant to diet-induced obesity, type 2 diabetes, and liver steatosis, accompanied by decreased food intake and increased fat thermogenesis. Leptin stimulated hypothalamic Stat3 phosphorylation and weight loss to a significantly higher level in SlugΔLepRb than in Slugf/f mice even before their body weight divergence. Conversely, hypothalamic LepRb neuron-specific overexpression of Slug, mediated by AAV-DIO-Slug transduction, induced leptin resistance, obesity, and metabolic disorders in mice on a chow diet. At the genomic level, Slug bound to and repressed the LepRb promoter, thereby inhibiting LepRb transcription. Consistently, Slug deficiency decreased LepRb promoter histone 3 lysine-27 methylations, repressive epigenetic marks, and increased LepRb mRNA levels in the hypothalamus. Collectively, these results unravel a previously-unrecognized hypothalamic neuronal Slug/epigenetic reprogramming/leptin resistance axis that promotes energy imbalance, obesity, and metabolic disease.
Keywords: Cell Biology; Diabetes; Leptin; Metabolism; Obesity