bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2024‒04‒07
58 papers selected by
Fawaz Alzaïd, Sorbonne Université



  1. Science. 2024 Apr 05. 384(6691): 134
      
    DOI:  https://doi.org/10.1126/science.adp5406
  2. Science. 2024 Apr 05. 384(6691): 31-32
      RNA labeled in young mice is detected 2 years later in adult mouse brains.
    DOI:  https://doi.org/10.1126/science.ado5751
  3. Cell Metab. 2024 Apr 02. pii: S1550-4131(24)00053-6. [Epub ahead of print]36(4): 857-876.e10
      Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.
    Keywords:  HDAC6 inhibitors; acetylation; anti-obesity drug; leptin receptor; leptin resistance; obesity; obesity treatment; translational medicine; type 2 diabetes
    DOI:  https://doi.org/10.1016/j.cmet.2024.02.007
  4. Nat Commun. 2024 Mar 30. 15(1): 2790
      Analysis of DNA methylation in cell-free DNA reveals clinically relevant biomarkers but requires specialized protocols such as whole-genome bisulfite sequencing. Meanwhile, millions of cell-free DNA samples are being profiled by whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous Hidden Markov Model, to predict DNA methylation of cell-free DNA and, therefore, tissues-of-origin, directly from plasma whole-genome sequencing. We validate the performance with 80 pairs of deep and shallow-coverage whole-genome sequencing and whole-genome bisulfite sequencing data.
    DOI:  https://doi.org/10.1038/s41467-024-47196-6
  5. Nat Commun. 2024 Mar 30. 15(1): 2779
      Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.
    DOI:  https://doi.org/10.1038/s41467-024-47108-8
  6. Nature. 2024 Apr 03.
      The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.
    DOI:  https://doi.org/10.1038/s41586-024-07251-0
  7. Science. 2024 Apr 04. eado8542
      Androgen signaling skews skin immunity toward reduced inflammation in male mice.
    DOI:  https://doi.org/10.1126/science.ado8542
  8. Nat Commun. 2024 Apr 02. 15(1): 2835
      Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.
    DOI:  https://doi.org/10.1038/s41467-024-47359-5
  9. Nature. 2024 Apr;628(8007): 250-254
      
    Keywords:  Education; History; Human behaviour
    DOI:  https://doi.org/10.1038/d41586-024-00997-7
  10. Nat Commun. 2024 Apr 05. 15(1): 2955
      Physical unclonable functions (PUFs) based on unique tokens generated by random manufacturing processes have been proposed as an alternative to mathematical one-way algorithms. However, these tokens are not distributable, which is a disadvantage for decentralized applications. Finding unclonable, yet distributable functions would help bridge this gap and expand the applications of object-bound cryptography. Here we show that large random DNA pools with a segmented structure of alternating constant and randomly generated portions are able to calculate distinct outputs from millions of inputs in a specific and reproducible manner, in analogy to physical unclonable functions. Our experimental data with pools comprising up to >1010 unique sequences and encompassing >750 comparisons of resulting outputs demonstrate that the proposed chemical unclonable function (CUF) system is robust, distributable, and scalable. Based on this proof of concept, CUF-based anti-counterfeiting systems, non-fungible objects and decentralized multi-user authentication are conceivable.
    DOI:  https://doi.org/10.1038/s41467-024-47187-7
  11. Nature. 2024 Apr 04.
      
    Keywords:  Funding; Publishing; Scientific community
    DOI:  https://doi.org/10.1038/d41586-024-00996-8
  12. Nature. 2024 Apr 03.
      OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.
    DOI:  https://doi.org/10.1038/s41586-024-07256-9
  13. Nature. 2024 Apr 04.
      
    Keywords:  Astronomy and astrophysics
    DOI:  https://doi.org/10.1038/d41586-024-00965-1
  14. J Clin Invest. 2024 Apr 01. pii: e166731. [Epub ahead of print]134(7):
      Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.
    Keywords:  Fibrosis; Hepatology; Macrophages; Transcription
    DOI:  https://doi.org/10.1172/JCI166731
  15. Science. 2024 Apr 05. 384(6691): 10-11
      
    DOI:  https://doi.org/10.1126/science.adp6023
  16. Nature. 2024 Apr 03.
      
    Keywords:  Arts; Culture
    DOI:  https://doi.org/10.1038/d41586-024-00898-9
  17. Nat Commun. 2024 Apr 04. 15(1): 2931
      Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.
    DOI:  https://doi.org/10.1038/s41467-024-46864-x
  18. Cell. 2024 Mar 21. pii: S0092-8674(24)00305-2. [Epub ahead of print]
      Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.
    Keywords:  Cardiovascular disease; Cholesterol; Metabolome; Microbiome; Oscillibacter
    DOI:  https://doi.org/10.1016/j.cell.2024.03.014
  19. Proc Natl Acad Sci U S A. 2024 Apr 09. 121(15): e2400675121
      Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1β. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1β release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1β levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.
    Keywords:  atherosclerosis; immunometabolism; innate immunity; macrophage; neutrophil
    DOI:  https://doi.org/10.1073/pnas.2400675121
  20. Cell. 2024 Mar 22. pii: S0092-8674(24)00250-2. [Epub ahead of print]
      Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.
    Keywords:  55LCC; AAA+ ATPase; C1orf109; CINP; SPATA5; SPATA5L1; genome instability; replication stress response; replisome regulation/proteostasis; unfoldase
    DOI:  https://doi.org/10.1016/j.cell.2024.03.002
  21. Nat Commun. 2024 Apr 05. 15(1): 2940
      A major question in developmental and regenerative biology is how organ size and architecture are controlled by progenitor cells. While limb bones exhibit catch-up growth (recovery of a normal growth trajectory after transient developmental perturbation), it is unclear how this emerges from the behaviour of chondroprogenitors, the cells sustaining the cartilage anlagen that are progressively replaced by bone. Here we show that transient sparse cell death in the mouse fetal cartilage is repaired postnatally, via a two-step process. During injury, progression of chondroprogenitors towards more differentiated states is delayed, leading to altered cartilage cytoarchitecture and impaired bone growth. Then, once cell death is over, chondroprogenitor differentiation is accelerated and cartilage structure recovered, including partial rescue of bone growth. At the molecular level, ectopic activation of mTORC1 correlates with, and is necessary for, part of the recovery, revealing a specific candidate to be explored during normal growth and in future therapies.
    DOI:  https://doi.org/10.1038/s41467-024-47311-7
  22. Nature. 2024 Apr 03.
      Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.
    DOI:  https://doi.org/10.1038/s41586-024-07248-9
  23. Nat Commun. 2024 Apr 02. 15(1): 2843
      Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
    DOI:  https://doi.org/10.1038/s41467-024-46971-9
  24. Nat Commun. 2024 Mar 30. 15(1): 2803
      Myeloid derived suppressor cells (MDSCs) are key regulators of immune responses and correlate with poor outcomes in hematologic malignancies. Here, we identify that MDSC mitochondrial fitness controls the efficacy of doxorubicin chemotherapy in a preclinical lymphoma model. Mechanistically, we show that triggering STAT3 signaling via β2-adrenergic receptor (β2-AR) activation leads to improved MDSC function through metabolic reprograming, marked by sustained mitochondrial respiration and higher ATP generation which reduces AMPK signaling, altering energy metabolism. Furthermore, induced STAT3 signaling in MDSCs enhances glutamine consumption via the TCA cycle. Metabolized glutamine generates itaconate which downregulates mitochondrial reactive oxygen species via regulation of Nrf2 and the oxidative stress response, enhancing MDSC survival. Using β2-AR blockade, we target the STAT3 pathway and ATP and itaconate metabolism, disrupting ATP generation by the electron transport chain and decreasing itaconate generation causing diminished MDSC mitochondrial fitness. This disruption increases the response to doxorubicin and could be tested clinically.
    DOI:  https://doi.org/10.1038/s41467-024-47096-9
  25. Nat Commun. 2024 Mar 30. 15(1): 2793
      Division of intracellular organelles often correlates with additional membrane wrapping, e.g., by the endoplasmic reticulum or the outer mitochondrial membrane. Such wrapping plays a vital role in proteome and lipidome organization. However, how an extra membrane impacts the mechanics of the division has not been investigated. Here we combine fluorescence and cryo-electron microscopy experiments with self-consistent field theory to explore the stress-induced instabilities imposed by membrane wrapping in a simple double-membrane tubular system. We find that, at physiologically relevant conditions, the outer membrane facilitates an alternative pathway for the inner-tube fission through the formation of a transient contact (hemi-fusion) between both membranes. A detailed molecular theory of the fission pathways in the double membrane system reveals the topological complexity of the process, resulting both in leaky and leakless intermediates, with energies and topologies predicting physiological events.
    DOI:  https://doi.org/10.1038/s41467-024-47122-w
  26. Nat Commun. 2024 Apr 05. 15(1): 2939
      Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.
    DOI:  https://doi.org/10.1038/s41467-024-47317-1
  27. Nature. 2024 Apr 02.
      
    Keywords:  Cardiovascular biology; Metabolism; Microbiome
    DOI:  https://doi.org/10.1038/d41586-024-00955-3
  28. Nature. 2024 Apr 03.
      
    Keywords:  Diabetes; Immunology; Medical research; Neurodegeneration
    DOI:  https://doi.org/10.1038/d41586-024-00974-0
  29. J Exp Med. 2024 May 06. pii: e20240229. [Epub ahead of print]221(5):
      Pustular psoriasis is an inflammatory skin disease with features of neutrophil-mediated sterile autoinflammation. In this issue of JEM, Baldo et al. (https://doi.org/10.1084/jem.20231464) show that this autoinflammation is driven by a vicious cycle through neutrophil-derived IL-26.
    DOI:  https://doi.org/10.1084/jem.20240229
  30. Nat Commun. 2024 Apr 01. 15(1): 2823
      Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.
    DOI:  https://doi.org/10.1038/s41467-024-47028-7
  31. Nat Commun. 2024 Apr 01. 15(1): 2820
      RORγt+ group 3 innate lymphoid cells (ILC3s) are essential for intestinal homeostasis. Dysregulation of ILC3s has been found in the gut of patients with inflammatory bowel disease and colorectal cancer, yet the specific mechanisms still require more investigation. Here we observe increased β-catenin in intestinal ILC3s from inflammatory bowel disease and colon cancer patients compared with healthy donors. In contrast to promoting RORγt expression in T cells, activation of Wnt/β-catenin signaling in ILC3s suppresses RORγt expression, inhibits its proliferation and function, and leads to a deficiency of ILC3s and subsequent intestinal inflammation in mice. Activated β-catenin and its interacting transcription factor, TCF-1, cannot directly suppress RORγt expression, but rather alters global chromatin accessibility and inhibits JunB expression, which is essential for RORγt expression in ILC3s. Together, our findings suggest that dysregulated Wnt/β-catenin signaling impairs intestinal ILC3s through TCF-1/JunB/RORγt regulation, further disrupting intestinal homeostasis, and promoting inflammation and cancer.
    DOI:  https://doi.org/10.1038/s41467-024-45616-1
  32. Nat Cell Biol. 2024 Apr 01.
      Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.
    DOI:  https://doi.org/10.1038/s41556-024-01386-y
  33. Cell. 2024 Mar 28. pii: S0092-8674(24)00303-9. [Epub ahead of print]
      Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.
    Keywords:  ATF4; ER stress; T cell exhaustion; chemoresistance; gastric cancer; immune checkpoint; solute carrier; taurine; transcription regulation; tumor recurrence and metastasis
    DOI:  https://doi.org/10.1016/j.cell.2024.03.011
  34. Nat Commun. 2024 Apr 05. 15(1): 2862
      The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.
    DOI:  https://doi.org/10.1038/s41467-024-46593-1
  35. Nat Commun. 2024 Mar 30. 15(1): 2797
      Silent information regulator 2 (Sir2) proteins typically catalyze NAD+-dependent protein deacetylation. The recently identified bacterial Sir2 domain-containing protein, defense-associated sirtuin 2 (DSR2), recognizes the phage tail tube and depletes NAD+ to abort phage propagation, which is counteracted by the phage-encoded DSR anti-defense 1 (DSAD1), but their molecular mechanisms remain unclear. Here, we determine cryo-EM structures of inactive DSR2 in its apo form, DSR2-DSAD1 and DSR2-DSAD1-NAD+, as well as active DSR2-tube and DSR2-tube-NAD+ complexes. DSR2 forms a tetramer with its C-terminal sensor domains (CTDs) in two distinct conformations: CTDclosed or CTDopen. Monomeric, rather than oligomeric, tail tube proteins preferentially bind to CTDclosed and activate Sir2 for NAD+ hydrolysis. DSAD1 binding to CTDopen allosterically inhibits tube binding and tube-mediated DSR2 activation. Our findings provide mechanistic insight into DSR2 assembly, tube-mediated DSR2 activation, and DSAD1-mediated inhibition and NAD+ substrate catalysis in bacterial DSR2 anti-phage defense systems.
    DOI:  https://doi.org/10.1038/s41467-024-47177-9
  36. Science. 2024 Apr 05. 384(6691): 20-25
      Fifty years after her discovery, the 3.2-million-year-old fossil still reigns as mother of us all. But she now has rivals.
    DOI:  https://doi.org/10.1126/science.adp5708
  37. Nature. 2024 Apr 03.
      
    Keywords:  Cardiovascular biology; Genetics
    DOI:  https://doi.org/10.1038/d41586-024-00061-4
  38. Hepatology. 2024 Apr 02.
      BACKGROUND AND AIMS: Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and provide targets for fibrotic therapies.APPROACH AND RESULTS: We identified lncRNA TILAM located near COL1A1, expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates expression of COL1A1 and other ECM genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog (Tilam), generated Tilam-deficient GFP-reporter mice, and challenged these mice in two different models of liver fibrosis. Single-cell data and analysis of GFP expression in Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with PML to regulate a feedback loop by which TGF-β2 reinforces TILAM expression and nuclear localization of PML to promote the fibrotic activity of HSCs.
    CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with PML to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.
    DOI:  https://doi.org/10.1097/HEP.0000000000000822
  39. Nature. 2024 Apr 01.
      
    Keywords:  Psychiatric disorders
    DOI:  https://doi.org/10.1038/d41586-024-00968-y
  40. Nat Commun. 2024 Apr 05. 15(1): 2941
      Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
    DOI:  https://doi.org/10.1038/s41467-024-47020-1
  41. Nat Commun. 2024 Apr 02. 15(1): 2632
      Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
    DOI:  https://doi.org/10.1038/s41467-024-46277-w
  42. Dev Cell. 2024 Mar 29. pii: S1534-5807(24)00189-8. [Epub ahead of print]
      Mammalian Notch signaling occurs when the binding of Delta or Jagged to Notch stimulates the proteolytic release of the Notch intracellular domain (NICD), which enters the nucleus to control target gene expression. To determine the temporal dynamics of events associated with Notch signaling under native conditions, we fluorescently tagged Notch and Delta at their endogenous genomic loci and visualized them upon pairing of receiver (Notch) and sender (Delta) cells as a function of time after cell contact. At contact sites, Notch and Delta immediately accumulated at 1:1 stoichiometry in synapses, which resolved by 15-20 min after contact. Synapse formation preceded the entrance of the Notch extracellular domain into the sender cell and accumulation of NICD in the nucleus of the receiver cell, which approached a maximum after ∼45 min and was prevented by chemical and genetic inhibitors of signaling. These findings directly link Notch-Delta synapse dynamics to NICD production with spatiotemporal precision.
    Keywords:  Delta; Notch; development; receptor; regulated proteolysis; signal transduction; signaling dynamics; synapses; transcription; transendocytosis
    DOI:  https://doi.org/10.1016/j.devcel.2024.03.021
  43. Sci Transl Med. 2024 Apr 03. 16(741): eadj9052
      Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aβ and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aβ plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aβ load, mitigated some Aβ-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.
    DOI:  https://doi.org/10.1126/scitranslmed.adj9052
  44. Sci Immunol. 2024 Apr 05. 9(94): eadp4669
      The hierarchy of immunosuppression predicts SARS-CoV-2 time to clearance and intrahost viral evolution.
    DOI:  https://doi.org/10.1126/sciimmunol.adp4669