bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2025–01–12
forty-five papers selected by
Fawaz Alzaïd, Sorbonne Université



  1. Nature. 2025 Jan 08.
      Plants lack specialized and mobile immune cells. Consequently, any cell type that encounters pathogens must mount immune responses and communicate with surrounding cells for successful defence. However, the diversity, spatial organization and function of cellular immune states in pathogen-infected plants are poorly understood1. Here we infect Arabidopsis thaliana leaves with bacterial pathogens that trigger or supress immune responses and integrate time-resolved single-cell transcriptomic, epigenomic and spatial transcriptomic data to identify cell states. We describe cell-state-specific gene-regulatory logic that involves transcription factors, putative cis-regulatory elements and target genes associated with disease and immunity. We show that a rare cell population emerges at the nexus of immune-active hotspots, which we designate as primary immune responder (PRIMER) cells. PRIMER cells have non-canonical immune signatures, exemplified by the expression and genome accessibility of a previously uncharacterized transcription factor, GT-3A, which contributes to plant immunity against bacterial pathogens. PRIMER cells are surrounded by another cell state (bystander) that activates genes for long-distance cell-to-cell immune signalling. Together, our findings suggest that interactions between these cell states propagate immune responses across the leaf. Our molecularly defined single-cell spatiotemporal atlas provides functional and regulatory insights into immune cell states in plants.
    DOI:  https://doi.org/10.1038/s41586-024-08383-z
  2. Nat Cell Biol. 2025 Jan 08.
      Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM. We generated a transcriptomic and epigenomic map of human astrocyte maturation using cortical organoids maintained in culture for nearly 2 years. Through this approach, we chronicled a multiphase developmental process. Our time course of human astrocyte maturation includes a molecularly distinct intermediate period that serves as a lineage commitment checkpoint upstream of mature quiescence. This intermediate stage acts as a site of developmental deviation separating IDH-wild-type neoplastic astrocyte-lineage cells from quiescent astrocyte populations. Interestingly, IDH1-mutant tumour astrocyte-lineage cells are the exception to this developmental perturbation, where immature properties are suppressed as a result of D-2-hydroxyglutarate oncometabolite exposure. We propose that this defiance is a consequence of IDH1-mutant-associated epigenetic dysregulation, and we identified biased DNA hydroxymethylation (5hmC) in maturation genes as a possible mechanism. Together, this study illustrates a distinct cellular state aberration in GBM astrocyte-lineage cells and presents developmental targets for experimental and therapeutic exploration.
    DOI:  https://doi.org/10.1038/s41556-024-01583-9
  3. Nat Commun. 2025 Jan 07. 16(1): 469
      Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment. This includes perturbation of REST transcriptional regulation of neurogenesis, disruption of CREB signaling regulating synaptic plasticity, and defects in neurovascular coupling mediating cerebral blood flow. Adult mice harboring either the Pcdha9 mutation, which show normal brain anatomy, or forebrain-specific Sap130 deletion via Emx1-Cre, which show microcephaly, both demonstrate learning and memory deficits and autism-like behavior. These findings provide mechanistic insights indicating the adverse neurodevelopment in HLHS may involve cell autonomous/nonautonomous defects and epigenetic dysregulation.
    DOI:  https://doi.org/10.1038/s41467-024-55741-6
  4. Nat Commun. 2025 Jan 04. 16(1): 390
      Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution. PP1 overexpression increases speckle cohesion and leads to retention of mRNA within speckles and the nucleus. Using APEX2 proximity labeling combined with RNA-sequencing, we characterize the recruitment of specific RNAs. We find that many transcripts are preferentially enriched within nuclear speckles compared to the nucleoplasm, particularly chromatin- and nucleus-associated transcripts. While total polyadenylated RNA retention increases with nuclear speckle cohesion, the ratios of most mRNA species to each other are constant, indicating non-selective retention. We further find that cellular responses to heat shock, oxidative stress, and hypoxia include changes to the phosphorylation and cohesion of nuclear speckles and to mRNA retention. Our results demonstrate that tuning the material properties of nuclear speckles provides a mechanism for the acute control of mRNA localization.
    DOI:  https://doi.org/10.1038/s41467-024-55469-3
  5. Nat Commun. 2025 Jan 04. 16(1): 395
      Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability. Using functional MRI connectivity, we further confirmed the significance of the central and lateral amygdala, hippocampal body, and prefrontal cortex in distinguishing schizophrenia cases from controls. Our findings underscore the value of single-cell transcriptomics in understanding the polygenicity of psychiatric disorders and suggest a promising alignment of genomic, transcriptomic, and brain imaging modalities for identifying common biological targets.
    DOI:  https://doi.org/10.1038/s41467-024-55611-1
  6. Nature. 2025 Jan 08.
      
    Keywords:  Animal behaviour; Brain; Epigenetics; Molecular biology
    DOI:  https://doi.org/10.1038/d41586-024-04080-z
  7. Science. 2025 Jan 10. 387(6730): 136-137
      Lipid-rich cartilage points to nonmetabolic functions of lipid vacuoles in mammals.
    DOI:  https://doi.org/10.1126/science.adu7943
  8. Nat Commun. 2025 Jan 08. 16(1): 509
      Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis. Mechanistically, S100P facilitates lysosomal degradation of acetyl-CoA carboxylase alpha (ACC1), which is indispensable for de novo biosynthesis of lipids. Loss of S100P elevates the expression of ACC1 and promotes ferroptotic sensitivity of HCC cells. S100P-mediated ACC1 degradation relies on RAB5C, which directs ACC1 to lysosome via P62-dependent selective autophagy. Knockdown of RAB5C or P62 abrogates S100P-induced lysosomal degradation of ACC1 and restores resistance of HCC cells to ferroptosis. Our work reveals an alternative anti-ferroptosis pathway and suggests S100P as a promising druggable target for ferroptosis-related therapy of HCC.
    DOI:  https://doi.org/10.1038/s41467-024-55785-8
  9. Nat Struct Mol Biol. 2025 Jan 09.
      Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis. Over 20 distinct conformations were identified by three-dimensional classification with resolutions typically higher than 4 Å. These conformations were used to reconstruct a complete elongation cycle of eukaryotic translation with elongation factors (eEFs). We found that compact eEF2 anchors to the partially rotated ribosome after subunit rolling and hypothesize that it stabilizes the local conformation for peptidyl transfer. Moreover, open-eEF3 binding to a fully rotated ribosome was observed, whose conformational change was coupled with head swiveling and body back-rotation of the 40S subunit.
    DOI:  https://doi.org/10.1038/s41594-024-01454-9
  10. Science. 2025 Jan 10. 387(6730): 192-201
      The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. Furthermore, different BAs regulated CD8+ T cells differently; primary BAs induced oxidative stress, whereas the secondary BA lithocholic acid inhibited T cell function through endoplasmic reticulum stress, which was countered by ursodeoxycholic acid. We demonstrate that modifying BA synthesis or dietary intake of ursodeoxycholic acid could improve tumor immunotherapy in liver cancer model systems.
    DOI:  https://doi.org/10.1126/science.adl4100
  11. Nat Commun. 2025 Jan 09. 16(1): 545
      Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1). Using complementary approaches in mice and humans to manipulate NE or AAT, we show high-fat diet (HFD) increases the NE:AAT ratio specifically in murine visceral adipose tissue, an effect only observed in males. Notably, HFD-fed male mice lacking NE have reduced glucocorticoid levels and action specifically in visceral adipose tissue, with improved glucose tolerance and insulin sensitivity, independent of systemic changes in free glucocorticoids. The protective effect of NE deficiency is lost when the adrenals are removed. Moreover, human asymptomatic heterozygous carriers of deleterious mutations in SERPINA1 resulting in lower AAT levels have increased adipose tissue glucocorticoid levels and action. However, in contrast to mice, humans present with systemic increases in free circulating glucocorticoid levels, an effect independent of HPA axis activation. These findings show that NE and AAT regulate local tissue glucocorticoid bioavailability in vivo, providing crucial evidence of a mechanism linking inflammation and metabolism.
    DOI:  https://doi.org/10.1038/s41467-024-55693-x
  12. Nat Commun. 2025 Jan 08. 16(1): 482
      Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions. Notably, we identified genes highly upregulated in stressed neurons and nearby glial cells, where AD diminished stress-response interactions that promote Aβ clearance. Further, cell-type-specific co-expression analysis highlighted three neuronal modules linked to neuroprotection, protein dephosphorylation, and Aβ regulation, with all modules downregulated as AD progresses. We identified ZNF460 as a transcription factor regulating these modules, offering a potential therapeutic target. In summary, this spatial transcriptome atlas provides valuable insight into AD's molecular mechanisms.
    DOI:  https://doi.org/10.1038/s41467-024-54715-y
  13. Science. 2025 Jan 10. 387(6730): 138-139
      Distinct brain circuits control sex preferences in mice.
    DOI:  https://doi.org/10.1126/science.adu7946
  14. Nat Metab. 2025 Jan 08.
      Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear. Here, we discover that mice with intestinal epithelial cell-specific knockout of Tm6sf2 (Tm6sf2ΔIEC) develop MASH, accompanied by impaired intestinal barrier and microbial dysbiosis. Transplanting stools from Tm6sf2ΔIEC mice induces steatohepatitis in germ-free recipient mice, whereas MASH is alleviated in Tm6sf2ΔIEC mice co-housed with wild-type mice. Mechanistically, Tm6sf2-deficient intestinal cells secrete more free fatty acids by interacting with fatty acid-binding protein 5 to induce intestinal barrier dysfunction, enrichment of pathobionts, and elevation of lysophosphatidic acid (LPA) levels. LPA is translocated from the gut to the liver, contributing to lipid accumulation and inflammation. Pharmacological inhibition of the LPA receptor suppresses MASH in both Tm6sf2ΔIEC and wild-type mice. Hence, modulating microbiota or blocking the LPA receptor is a potential therapeutic strategy in TM6SF2 deficiency-induced MASH.
    DOI:  https://doi.org/10.1038/s42255-024-01177-7
  15. Nature. 2025 Jan;637(8045): 274-275
      
    Keywords:  Machine learning
    DOI:  https://doi.org/10.1038/d41586-024-03852-x
  16. Nature. 2025 Jan;637(8045): 505-507
      
    Keywords:  Careers; Lab life; Scientific community; Society
    DOI:  https://doi.org/10.1038/d41586-024-04218-z
  17. Nat Immunol. 2025 Jan 08.
      Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection. β-Glucan treatment reduces the morbidity and mortality against IAV infection, independent of host resistance. The enhanced survival is the result of increased recruitment of neutrophils via RoRγt+ T cells in the lung tissue. β-Glucan treatment promotes granulopoiesis in a type 1 interferon-dependent manner that leads to the generation of a unique subset of immature neutrophils utilizing a mitochondrial oxidative metabolism and producing interleukin-10. Collectively, our data indicate that β-glucan reprograms hematopoietic stem cells to generate neutrophils with a new 'regulatory' function, which is required for promoting disease tolerance and maintaining lung tissue integrity against viral infection.
    DOI:  https://doi.org/10.1038/s41590-024-02041-2
  18. Sci Immunol. 2025 Jan 10. 10(103): eadl4909
      Regulatory T cells (Tregs) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT Tregs under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2hi VAT Treg subsets. Treg-specific deletion of Srebf2, the master regulator of cholesterol homeostasis, selectively reduced ST2hi VAT Tregs, increasing VAT inflammation and insulin resistance. Single-cell RNA/T cell receptor (TCR) sequencing revealed a specific loss and reduced clonal expansion of ST2hi VAT Treg subsets after Srebf2 deletion. Srebf2-mediated cholesterol homeostasis potentiated strong TCR signaling, which preferentially promoted ST2hi VAT Treg accumulation. However, long-term high-fat diet feeding disrupted VAT Treg cholesterol homeostasis and impaired clonal expansion of the ST2hi subset. Restoring Treg cholesterol homeostasis rescued VAT Treg accumulation in obese mice, suggesting that modulation of cholesterol homeostasis could be a promising strategy for Treg-targeted therapies in obesity-associated metabolic diseases.
    DOI:  https://doi.org/10.1126/sciimmunol.adl4909
  19. Nat Commun. 2025 Jan 08. 16(1): 510
      Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams. PTMNavigator provides ~3000 canonical pathways from manually curated databases, enabling users to modify and create custom diagrams tailored to their data. Additionally, PTMNavigator automatically runs kinase and pathway enrichment algorithms whose results are directly integrated into the visualization. This offers a comprehensive view of the intricate relationship between PTMs and signaling pathways. We demonstrate the utility of PTMNavigator by applying it to two phosphoproteomics datasets, showing how it can enhance pathway enrichment analysis, visualize how drug treatments result in a discernable flow of PTM-driven signaling, and aid in proposing extensions to existing pathways. By enhancing our understanding of cellular signaling dynamics and facilitating the discovery of PTM-pathway interactions, PTMNavigator advances our knowledge of PTM biology and its implications in health and disease.
    DOI:  https://doi.org/10.1038/s41467-024-55533-y
  20. Nature. 2025 Jan 07.
      
    Keywords:  Cardiovascular biology; Structural biology
    DOI:  https://doi.org/10.1038/d41586-024-04210-7
  21. Nat Commun. 2025 Jan 05. 16(1): 401
      Single cell ATAC-seq (scATAC-seq) experimental designs have become increasingly complex, with multiple factors that might affect chromatin accessibility, including genotype, cell type, tissue of origin, sample location, batch, etc., whose compound effects are difficult to test by existing methods. In addition, current scATAC-seq data present statistical difficulties due to their sparsity and variations in individual sequence capture. To address these problems, we present a zero-adjusted statistical model, Probability model of Accessible Chromatin of Single cells (PACS), that allows complex hypothesis testing of accessibility-modulating factors while accounting for sparse and incomplete data. For differential accessibility analysis, PACS controls the false positive rate and achieves a 17% to 122% higher power on average than existing tools. We demonstrate the effectiveness of PACS through several analysis tasks, including supervised cell type annotation, compound hypothesis testing, batch effect correction, and spatiotemporal modeling. We apply PACS to datasets from various tissues and show its ability to reveal previously undiscovered insights in scATAC-seq data.
    DOI:  https://doi.org/10.1038/s41467-024-55580-5
  22. Nat Commun. 2025 Jan 07. 16(1): 451
      Mitochondria are crucial for cellular metabolism and signalling. Mitochondrial activity is modulated by mitochondrial fission and fusion, which are required to properly balance metabolic functions, transfer material between mitochondria, and remove defective mitochondria. Mitochondrial fission occurs at mitochondria-endoplasmic reticulum (ER) contact sites, and requires the formation of actin filaments that drive mitochondrial constriction and the recruitment of the fission protein DRP1. The role of actin in mitochondrial fusion remains entirely unexplored. Here we show that preventing actin polymerisation on either mitochondria or the ER disrupts both fission and fusion. We show that fusion but not fission is dependent on Arp2/3, whereas both fission and fusion require INF2 formin-dependent actin polymerization. We also show that mitochondria-associated actin marks fusion sites prior to the fusion protein MFN2. Together, our work introduces a method for perturbing organelle-associated actin and demonstrates a previously unknown role for actin in mitochondrial fusion.
    DOI:  https://doi.org/10.1038/s41467-024-55758-x
  23. bioRxiv. 2024 Dec 26. pii: 2024.12.26.629296. [Epub ahead of print]
      Mammalian genomes contain millions of regulatory elements that control the complex patterns of gene expression. Previously, The ENCODE consortium mapped biochemical signals across many cell types and tissues and integrated these data to develop a Registry of 0.9 million human and 300 thousand mouse candidate cis-Regulatory Elements (cCREs) annotated with potential functions1. We have expanded the Registry to include 2.35 million human and 927 thousand mouse cCREs, leveraging new ENCODE datasets and enhanced computational methods. This expanded Registry covers hundreds of unique cell and tissue types, providing a comprehensive understanding of gene regulation. Functional characterization data from assays like STARR-seq, MPRA, CRISPR perturbation, and transgenic mouse assays now cover over 90% of human cCREs, revealing complex regulatory functions. We identified thousands of novel silencer cCREs and demonstrated their dual enhancer/silencer roles in different cellular contexts. Integrating the Registry with other ENCODE annotations facilitates genetic variation interpretation and trait-associated gene identification, exemplified by discovering KLF1 as a novel causal gene for red blood cell traits. This expanded Registry is a valuable resource for studying the regulatory genome and its impact on health and disease.
    DOI:  https://doi.org/10.1101/2024.12.26.629296
  24. Proc Natl Acad Sci U S A. 2025 Jan 14. 122(2): e2418985122
      The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells. Experiments using conditional Tcf7- or Tox-knockout mice highlight that TCF-1 is essential for the memory response generated by anti-CTLA-4, whereas TOX deletion alone in T cells has no effect on the response to anti-PD-1. Deepening our understanding of how checkpoint inhibition affects memory response is crucial for advancing our understanding of the enduring impacts of these immunotherapies on the immune system.
    Keywords:  anti-CTLA-4; anti-PD-1; immune checkpoint therapies; memory response
    DOI:  https://doi.org/10.1073/pnas.2418985122
  25. Cell Metab. 2025 Jan 07. pii: S1550-4131(24)00483-2. [Epub ahead of print]37(1): 3-4
      De novo lipogenesis (DNL) is the process whereby cells synthesize fatty acids from acetyl-CoA, contributing to steatosis in fatty liver disease. Two new studies, using genetic mouse models, metabolomics, and pharmacology, identified alternative pathways in DNL and unexpected physiological effects when targeting key enzymes in this pathway.
    DOI:  https://doi.org/10.1016/j.cmet.2024.12.001
  26. Nat Metab. 2025 Jan 09.
      The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate bind and act as promoters of genes involved in growth, differentiation and ion transport. We propose a mechanism involving direct modification of specific genomic regions by SCFAs resulting in increased chromatin accessibility and, in the case of butyrate, opposing effects on the proliferation of normal versus CRC cells.
    DOI:  https://doi.org/10.1038/s42255-024-01191-9
  27. Nature. 2025 Jan;637(8045): 296-303
      Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis. Emerging evidence challenges this perspective, painting a more nuanced picture in which type 2 immunity might protect against or even actively suppress tumour growth and progression. In this Review, we explore discoveries that highlight the potential of type 2 immunity in reshaping the landscape of cancer immunotherapies.
    DOI:  https://doi.org/10.1038/s41586-024-08194-2
  28. Nature. 2025 Jan;637(8045): 272
      
    Keywords:  Communication; Policy; Scientific community; Society
    DOI:  https://doi.org/10.1038/d41586-025-00019-0
  29. Nat Commun. 2025 Jan 04. 16(1): 399
      Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
    DOI:  https://doi.org/10.1038/s41467-024-55725-6
  30. Nature. 2025 Jan 08.
      
    Keywords:  Biochemistry; Structural biology
    DOI:  https://doi.org/10.1038/d41586-024-04108-4
  31. Nat Cell Biol. 2025 Jan 08.
      Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response. In particular, acyl chains from these stores were liberated by triacylglycerol lipases and used to fuel biosynthesis of the quintessential mitochondrial membrane lipid cardiolipin to support new mitochondrial biogenesis. We demonstrate that a comparable recovery pathway exists in mammalian cells, which fail to recover from doxycycline treatment when lacking the ATGL lipase. Collectively, our work reveals a key component of mitochondrial stress recovery and offers a rich resource for further exploration of the broad cellular responses to mitochondrial dysfunction.
    DOI:  https://doi.org/10.1038/s41556-024-01586-6
  32. Nat Commun. 2025 Jan 09. 16(1): 524
      Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions. HSC-specific depletion of ATF4 suppresses liver fibrosis in vivo. Mechanistically, TGFβ resets ATF4 to orchestrate a unique enhancer program for the transcriptional activation of pro-fibrotic EMT genes. Analysis of human data confirms a strong correlation between HSC ATF4 expression and liver fibrosis progression. Importantly, a small molecule inhibitor targeting ATF4 translation effectively mitigates liver fibrosis. Together, our findings identify a mechanism promoting liver fibrosis and reveal new opportunities for treating this otherwise non-targetable disease.
    DOI:  https://doi.org/10.1038/s41467-024-55738-1
  33. Cell Rep. 2025 Jan 08. pii: S2211-1247(24)01512-2. [Epub ahead of print]44(1): 115161
      Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations. We demonstrate that loss of the proteasome adaptor protein Ecm29 alters the efficacy and accuracy of antigen generation. Inducible oligodendroglia- or microglia-conditional Ecm29 knockout mice exhibit higher susceptibility to experimental autoimmune encephalomyelitis (EAE) than control counterparts do, coincident with reduced Treg cell populations in the spinal cord. Immunopeptidome profiling identifies self-antigens that modulate myelin-reactive T cell responses. Intraspinal adeno-associated virus (AAV)/Olig001-mediated expression of the self-antigen NDUFA1p ameliorates EAE and expands NDUFA1p-recognizing CD103+CD8+CD122+ Treg cells. Thus, Ecm29/proteasome-controlled, neuroglia-derived self-antigens modulate CNS immune tolerance.
    Keywords:  CNS immune tolerance; CP: Immunology; CP: Neuroscience; EAE model; Ecm29; Treg expansion; neuroglia-derived self-antigens; oligodendrocyte; proteasome
    DOI:  https://doi.org/10.1016/j.celrep.2024.115161
  34. Nat Commun. 2025 Jan 07. 16(1): 454
      Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events. However, how noradrenergic dynamics impact DG-dependent function during contextual discrimination and pattern separation remains unclear. Here, we report that aversive contextual processing in mice is linked to linear elevations in tonic norepinephrine release dynamics within the DG and report that this engagement of prolonged norepinephrine release is sufficient to produce contextual disambiguation, even in the absence of a salient aversive stimulus. These findings suggest that spatiotemporal ramping characteristics of LC-NE release in the DG during stress likely serve an important role in driving contextual processing.
    DOI:  https://doi.org/10.1038/s41467-025-55817-x
  35. FEBS Lett. 2025 Jan 05.
      The mitochondrial outer membrane iron-sulphur ([Fe-S]) protein mitoNEET has been extensively studied as a target of the anti-inflammatory and type-2 diabetes drug pioglitazone and as a protein affecting mitochondrial respiratory rate. Despite these extensive past studies, its molecular function has yet to be discovered. Here, we applied an interdisciplinary approach and discovered an explicit nitric oxide (NO) access site to the mitoNEET [2Fe-2S] cluster. We found that O2 and pioglitazone block NO access to the cluster, suggesting a molecular function for the mitoNEET [2Fe-2S] cluster in mitochondrial signal transduction. Our discovery hints at a new pathway via which mitochondria can sense hypoxia through O2 protection of the mitoNEET [2Fe-2S] cluster, a new paradigm in understanding the importance of [Fe-S] clusters for gasotransmitter signal transduction in eukaryotes.
    Keywords:  H2S; gasotransmitter; hypoxia; iron–sulphur cluster; mitoNEET; nitric oxide
    DOI:  https://doi.org/10.1002/1873-3468.15097
  36. Nat Commun. 2025 Jan 09. 16(1): 541
      The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation. Notably, CDK4 depletion or long-term CDK4/6 inhibition confers resistance to apoptosis in TNBC cells. Mechanistically, CDK4 enhances mitochondria-endoplasmic reticulum contact (MERCs) formation, promoting mitochondrial fission and ER-mitochondrial calcium signaling, which are crucial for TNBC metabolic flexibility. Phosphoproteomic analysis identified CDK4's role in regulating PKA activity at MERCs. In this work, we highlight CDK4's role in mitochondrial apoptosis inhibition and suggest that targeting MERCs-associated metabolic shifts could enhance TNBC therapy.
    DOI:  https://doi.org/10.1038/s41467-024-55605-z
  37. J Exp Med. 2025 Feb 03. pii: e20240592. [Epub ahead of print]222(2):
      Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.5-14.5) FL stages, revealing that while hepatoblasts were the primary source of hematopoietic growth factors, other stromal cells-including mesenchymal, mesothelial, and endothelial cells-also contributed to this signaling network. Using a dedicated image analysis pipeline, we quantified cell distances to tissue structures and defined neighbor relationships, uncovering that different hematopoietic progenitors exhibit distinct preferences for neighboring stromal cells and show developmental changes in spatial distribution. Notably, our data suggest that the sub-mesothelium region plays a prominent role in early fetal hematopoiesis. This approach offers a valuable tool for studying complex cellular interactions in biological systems, providing new insights into hematopoietic niche organization during development.
    DOI:  https://doi.org/10.1084/jem.20240592
  38. Nat Commun. 2025 Jan 07. 16(1): 456
      Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development. Optimized srRNA vaccines generate protective immunity (according to the WHO defined thresholds) at doses up to 1,000,000-fold lower than mRNA in female mouse models of influenza and rabies. Clinically, safety and immunogenicity of RBI-4000, an srRNA vector encoding the rabies glycoprotein, was evaluated in a Phase I study (NCT06048770). RBI-4000 was able to elicit de novo protective immunity in the majority of healthy participants when administered at a dose of 0.1, 1, or 10 microgram (71%, 94%, 100%, respectively) in a prime-boost schedule. Similarly, we observe immunity above the WHO benchmark of protection following a single administration in most participants at both 1 and 10 microgram doses. There are no serious adverse events reported across all cohorts. These data establish the high therapeutic index of optimized srRNA vectors, demonstrating feasibility of both low dose and single dose approaches for vaccine applications.
    DOI:  https://doi.org/10.1038/s41467-025-55843-9
  39. Sci Signal. 2025 Jan 07. 18(868): eado8860
      Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers. We found that LPS-activated IRF3 mediated de novo enhancer formation indirectly by activating the type I interferon (IFN)-induced ISGF3. However, ISGF3 was generally needed to collaborate with IRF1, particularly where chromatin was less accessible. At these locations, IRF1 was required for the initial opening of chromatin, with ISGF3 extending accessibility and promoting the deposition of H3K4me1, marking poised enhancers. Because IRF1 expression depends on the transcription factor NF-κB, which is activated in infected but not bystander cells, IRF-regulated enhancers required activation of both the IRF3 and NF-κB branches of the innate immune signaling network. However, type II IFN (IFN-γ), which is typically produced by T cells, may also induce IRF1 expression through the STAT1 homodimer GAF. We showed that, upon IFN-γ stimulation, IRF1 was also responsible for opening inaccessible chromatin sites that could then be exploited by GAF to form de novo enhancers. Together, our results reveal how combinatorial logic gates of IRF1-ISGF3 or IRF1-GAF restrict immune epigenomic memory formation to macrophages exposed to pathogens or IFN-γ-secreting T cells but not bystander macrophages exposed transiently to type I IFN.
    DOI:  https://doi.org/10.1126/scisignal.ado8860
  40. Nat Commun. 2025 Jan 09. 16(1): 516
      Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons, Shellder and Spoink, invaded the genomes of multiple species of the melanogaster subgroup within the last 50 years. Through horizontal transfer, Spoink spread in D. melanogaster during the 1980s, while both Shellder and Spoink invaded D. simulans in the 1990s. Possibly following hybridization, D. simulans infected the island endemic species D. mauritiana (Mauritius) and D. sechellia (Seychelles) with both TEs after 1995. In the same approximate time-frame, Shellder also invaded D. teissieri, a species confined to sub-Saharan Africa. We find that the donors of Shellder and Spoink are likely American Drosophila species from the willistoni, cardini, and repleta groups. Thus, the described cascade of TE invasions could only become feasible after D. melanogaster and D. simulans extended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE.
    DOI:  https://doi.org/10.1038/s41467-024-55779-6
  41. J Leukoc Biol. 2025 Jan 06. pii: qiaf002. [Epub ahead of print]
      In tissues, neutrophils neutralize Candida albicans through phagocytosis and delay C. albicans hyphae growth by deploying neutrophil extracellular traps (NETs). However, in the bloodstream, the dynamic interactions between NETs and C. albicans are far less understood. Here, we employ a microfluidic assay and measure a significant increase in intact NETs in blood within 3 hours after adding C. albicans yeast or hyphae. We show that C. albicans yeast can be captured efficiently on NETs, thereby delaying the transition to hyphal growth. We measure higher amounts of intact NETs in blood samples from invasive candidiasis patients compared to healthy participants, both with and without stimulation. These findings suggest that both C. albicans yeast and hyphae in the bloodstream stimulate NET release, potentially aiding in their removal from the blood.
    Keywords:  candidemia; host-pathogen; innate immunity; microfluidic
    DOI:  https://doi.org/10.1093/jleuko/qiaf002
  42. Nature. 2025 Jan 08.
      Transcriptional regulation, which involves a complex interplay between regulatory sequences and proteins, directs all biological processes. Computational models of transcription lack generalizability to accurately extrapolate to unseen cell types and conditions. Here we introduce GET (general expression transformer), an interpretable foundation model designed to uncover regulatory grammars across 213 human fetal and adult cell types1,2. Relying exclusively on chromatin accessibility data and sequence information, GET achieves experimental-level accuracy in predicting gene expression even in previously unseen cell types3. GET also shows remarkable adaptability across new sequencing platforms and assays, enabling regulatory inference across a broad range of cell types and conditions, and uncovers universal and cell-type-specific transcription factor interaction networks. We evaluated its performance in prediction of regulatory activity, inference of regulatory elements and regulators, and identification of physical interactions between transcription factors and found that it outperforms current models4 in predicting lentivirus-based massively parallel reporter assay readout5,6. In fetal erythroblasts7, we identified distal (greater than 1 Mbp) regulatory regions that were missed by previous models, and, in B cells, we identified a lymphocyte-specific transcription factor-transcription factor interaction that explains the functional significance of a leukaemia risk predisposing germline mutation8-10. In sum, we provide a generalizable and accurate model for transcription together with catalogues of gene regulation and transcription factor interactions, all with cell type specificity.
    DOI:  https://doi.org/10.1038/s41586-024-08391-z
  43. Nat Commun. 2025 Jan 08. 16(1): 497
      The sex chromosomes contain complex, important genes impacting medical phenotypes, but differ from the autosomes in their ploidy and large repetitive regions. To enable technology developers along with research and clinical laboratories to evaluate variant detection on male sex chromosomes X and Y, we create a small variant benchmark set with 111,725 variants for the Genome in a Bottle HG002 reference material. We develop an active evaluation approach to demonstrate the benchmark set reliably identifies errors in challenging genomic regions and across short and long read callsets. We show how complete assemblies can expand benchmarks to difficult regions, but highlight remaining challenges benchmarking variants in long homopolymers and tandem repeats, complex gene conversions, copy number variable gene arrays, and human satellites.
    DOI:  https://doi.org/10.1038/s41467-024-55710-z