bims-nocaut Biomed News
on Non-canonical autophagy
Issue of 2025–02–16
five papers selected by
Quentin Frenger, University of Strasbourg



  1. Front Cell Dev Biol. 2025 ;13 1532050
      Autophagy-related protein 8 (ATG8) family proteins, including LC3 and GABARAP subfamilies, are pivotal in canonical autophagy, driving autophagosome formation, cargo selection, and lysosomal fusion. However, recent studies have identified non-canonical roles for lipidated ATG8 in processes such as LC3-associated phagocytosis (LAP), LC3-associated endocytosis (LANDO), and lipidated ATG8-mediated secretory autophagy. These pathways expand ATG8's functional repertoire in immune regulation, membrane repair, and pathogen clearance, as ATG8 becomes conjugated to single-membrane structures (e.g., phagosomes and lysosomes). This review examines the molecular mechanisms of ATG8 lipidation, focusing on its selective conjugation to phosphatidylethanolamine (PE) in autophagy and phosphatidylserine (PS) in CASM. We highlight LIR-based probes and LC3/GABARAP-specific deconjugases as critical tools that allow precise tracking and manipulation of ATG8 in autophagic and non-autophagic contexts. These advancements hold therapeutic promise for treating autophagy-related diseases, including cancer and neurodegenerative disorders, by targeting ATG8-driven pathways that maintain cellular homeostasis.
    Keywords:  LAP; LC3/GABARAP; LIR motif; Lando; autophagy; deconjugase; non-canonical autophagy; probe
    DOI:  https://doi.org/10.3389/fcell.2025.1532050
  2. Front Cell Dev Biol. 2025 ;13 1518991
      Autophagy is the major degradation process in cells and is involved in a variety of physiological and pathological functions. While macroautophagy, which employs a series of molecular cascades to form ATG8-coated double membrane autophagosomes for degradation, remains the well-known type of canonical autophagy, microautophagy and chaperon-mediated autophagy have also been characterized. On the other hand, recent studies have focused on the functions of autophagy proteins beyond intracellular degradation, including noncanonical autophagy, also known as the conjugation of ATG8 to single membranes (CASM), and autophagy-related extracellular secretion. In particular, CASM is unique in that it does not require autophagy upstream mechanisms, while the ATG8 conjugation system is involved in a manner different from canonical autophagy. There have been many reports on the involvement of these autophagy-related mechanisms in neurodegenerative diseases, with Parkinson's disease (PD) receiving particular attention because of the important roles of several causative and risk genes, including LRRK2. In this review, we will summarize and discuss the contributions of canonical and noncanonical autophagy to cellular functions, with a special focus on the pathogenesis of PD.
    Keywords:  CASM; LRRK2; Parkinson’s disease; autophagy-related secretion; lysosome; noncanonical autophagy; α-synuclein
    DOI:  https://doi.org/10.3389/fcell.2025.1518991
  3. Cancers (Basel). 2025 Jan 24. pii: 384. [Epub ahead of print]17(3):
      Neutrophils, the most abundant circulating white blood cells, are essential for the initial immune response to infection and injury. Emerging research reveals a dualistic function of neutrophils in cancer, where they can promote or inhibit tumor progression. This dichotomy is influenced by the tumor microenvironment, with neutrophils capable of remodeling the extracellular matrix, promoting angiogenesis, or alternatively inducing cancer cell death and enhancing immune responses. An intriguing yet poorly understood aspect of neutrophil-cancer interactions is the phenomenon of neutrophil engulfment by cancer cells, which has been observed across various cancers. This process, potentially mediated by LC3-associated phagocytosis (LAP), raises questions about whether it serves as a mechanism for immune evasion or contributes to tumor cell death through pathways like ferroptosis. This review examines current knowledge on neutrophil development, their roles in cancer, and the mechanisms of LAP in neutrophil engulfment by tumor cells. We discuss how manipulating LAP impacts cancer progression and may represent a therapeutic strategy. We also explore neutrophils' potential as delivery vehicles for cancer therapeutic agents. Understanding the complex functions of tumor-associated neutrophils (TANs) and the molecular mechanisms underlying LAP in cancer may open new avenues for effective therapeutic interventions and mitigate potential risks.
    Keywords:  LC3-associated phagocytosis; emperipolesis; neutrophil engulfment; neutrophil-based drug delivery; phagocytosis; tumor microenvironment; tumor-associated neutrophils
    DOI:  https://doi.org/10.3390/cancers17030384
  4. Autophagy. 2025 Feb 13. 1-18
      STING1 is a central hub protein of CGAS-STING1 signaling which is important signaling axis to sense DNA for the host against pathogens infection through regulating type I interferon (IFN-I) production. However, excessive STING1 activation-induced overproduced IFN-I triggers tissue damage and autoimmune disorders. Thus, the activity of STING1 must be precisely regulated for immune homeostasis. Here, we discovered SESN1 (sestrin 1) as an essential negative regulator of STING1 to maintain immune homeostasis. Upon herpes simplex virus-1 (HSV-1) infection, the expression of SESN1 was downregulated, which enhanced potentiality to virus defense for host. Consistently, SESN1-deficient mice exhibited stronger ability against HSV-1 infection compared to wild-type littermates. Additionally, we found the expression of SESN1 was decreased in systemic lupus erythematosus (SLE) patients and trex1 KO mouse model of autoimmune disease. Intriguingly, the replenishment of SESN1 effectively impressed IFN-I production and autoimmune responses in the PBMCs of human SLE specimens and the trex1 KO mouse model both in vitro and in vivo. Mechanistically, SESN1 targeted STING1 and promoted STING1 autophagic degradation by facilitating the interaction of SQSTM1/p62 and STING1. Together, our study uncovers a crucial role of SESN1 for immune homeostasis to balance anti-virus and autoimmunity by regulating STING1. SESN1 might be a potential therapeutic target for infectious and autoimmune diseases.Abbreviations: BMDMs: bone marrow-derived macrophages; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; HTDNA: herring testes DNA; IFNA4: interferon alpha 4; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISD: interferon stimulatory DNA; ISGs: IFN-stimulated genes; PBMCs: peripheral blood mononuclear cells; RSAD2: radical S-adenosyl methionine domain containing 2; SLE: systemic lupus erythematosus; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1.
    Keywords:  Autophagy; Degradation; SESN1; STING1; immune homeostasis
    DOI:  https://doi.org/10.1080/15548627.2025.2463148
  5. Cell. 2025 Feb 05. pii: S0092-8674(25)00096-0. [Epub ahead of print]
      Stimulator of interferon genes (STING) transmits signals downstream of the cytosolic DNA sensor cyclic guanosine monophosphate-AMP synthase (cGAS), leading to transcriptional upregulation of cytokines. However, components of the STING signaling pathway, such as IRF3 and IFNAR1, are not essential for autoinflammatory disease in STING gain-of-function (STING-associated vasculopathy with onset in infancy [SAVI]) mice. Recent discoveries revealed that STING also functions as a proton channel that deacidifies the Golgi apparatus. Because pH impacts Golgi enzyme activity, protein maturation, and trafficking, we hypothesized that STING proton channel activity influences multiple Golgi functions. Here, we show that STING-mediated proton efflux non-transcriptionally regulates Golgi trafficking of protein cargos. This process requires the Golgi-associated protein ArfGAP2, a cell-type-specific dual regulator of STING-mediated proton efflux and signaling. Deletion of ArfGAP2 in hematopoietic and endothelial cells markedly reduces STING-mediated cytokine and chemokine secretion, immune cell activation, and autoinflammatory pathology in SAVI mice. Thus, ArfGAP2 facilitates STING-mediated signaling and cytokine release in hematopoietic cells, significantly contributing to autoinflammatory disease pathogenesis.
    Keywords:  ArfGAP2; Golgi trafficking; SAVI; STING; antiviral immunity; autoinflammation; cGAS; chemokines; cytokines; interferon
    DOI:  https://doi.org/10.1016/j.cell.2025.01.027