bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2021–10–03
eleven papers selected by
the Merkel lab, Ludwig-Maximilians University and Benjamin Winkeljann, Ludwig-Maximilians University



  1. J Control Release. 2021 Sep 23. pii: S0168-3659(21)00500-9. [Epub ahead of print]
      Gene therapy has gained popularity in the treatment of incurable diseases. However, cell components, such as surface membrane, cytoskeleton protein, and nuclear envelope, retard the transport of nucleic acids, lowering the transfection efficiency. We developed a physical-chemical hybrid platform (S-RCLs) involving cationic lipid nanoparticles (RCLs) exposed to cyclic stretch. The transfection efficiency and delivery mechanisms of S-RCLs for siRNAs and pDNAs (plasmid DNAs encoding luciferase) were investigated. S-RCLs effectively delivered both siRNAs and pDNAs by overcoming the cell barriers. Mechanistically, S-RCLs promote the cellular uptake mediated by CD44, EH-domain containing 2 (EHD2), and caveolin-1 (CAV-1); intracellular transport via MAP6 Domain Containing 1 (Map6d1) and F-actin; and DNA transcription regulated by LSM3 and Hist1h3e in the nucleus. Thus, S-RCLs are a promising hybrid platform with excellent efficiency and biocompatibility for gene delivery both in vitro and in vivo.
    Keywords:  Biophysical stretch; Cationic lipid nanoparticles; Gene delivery; Hybrid platform; pDNA; siRNA
    DOI:  https://doi.org/10.1016/j.jconrel.2021.09.021
  2. J Nanobiotechnology. 2021 Sep 27. 19(1): 292
      Cationic polymers have been widely studied for non-viral gene delivery due to their ability to bind genetic material and to interact with cellular membranes. However, their charged nature carries the risk of increased cytotoxicity and interaction with serum proteins, limiting their potential in vivo application. Therefore, hydrophilic or anionic shielding polymers are applied to counteract these effects. Herein, a series of micelle-forming and micelle-shielding polymers were synthesized via RAFT polymerization. The copolymer poly[(n-butyl acrylate)-b-(2-(dimethyl amino)ethyl acrylamide)] (P(nBA-b-DMAEAm)) was assembled into cationic micelles and different shielding polymers were applied, i.e., poly(acrylic acid) (PAA), poly(4-acryloyl morpholine) (PNAM) or P(NAM-b-AA) block copolymer. These systems were compared to a triblock terpolymer micelle comprising PAA as the middle block. The assemblies were investigated regarding their morphology, interaction with pDNA, cytotoxicity, transfection efficiency, polyplex uptake and endosomal escape. The naked cationic micelle exhibited superior transfection efficiency, but increased cytotoxicity. The addition of shielding polymers led to reduced toxicity. In particular, the triblock terpolymer micelle convinced with high cell viability and no significant loss in efficiency. The highest shielding effect was achieved by layering micelles with P(NAM-b-AA) supporting the colloidal stability at neutral zeta potential and completely restoring cell viability while maintaining moderate transfection efficiencies. The high potential of this micelle-layer-combination for gene delivery was illustrated for the first time.
    Keywords:  Anionic polymer; Cationic polymer; Gene delivery; Micelle; Shielding; Transfection
    DOI:  https://doi.org/10.1186/s12951-021-00994-2
  3. Nat Rev Mater. 2021 Sep 21. 1-2
      Lipid nanoparticles are essential to mRNA vaccines. The groundwork for lipid-based drug delivery systems was laid more than 40 years ago in the lab of Pieter Cullis, Professor at the University of British Columbia. Nature Reviews Materials talks to Pieter Cullis about the history and future of lipid nanoparticle-nucleic acid drugs.
    Keywords:  Drug delivery; Lipids; Nanoparticles; Nucleic-acid therapeutics; RNA
    DOI:  https://doi.org/10.1038/s41578-021-00379-9
  4. Pharmaceutics. 2021 Sep 08. pii: 1428. [Epub ahead of print]13(9):
      Pancreatic carcinoma (PC) is greatly induced by the KRAS gene mutation, but effective targeted delivery for gene therapy has not existed. Small interfering ribonucleic acid (siRNA) serves as an advanced therapeutic modality and holds great promise for cancer treatment. However, the development of a non-toxic and high-efficiency carrier system to accurately deliver siRNA into cells for siRNA-targeted gene silencing is still a prodigious challenge. Herein, polyethylenimine (PEI)-modified hydroxyapatite (HAp) nanoparticles (HAp-PEI) were fabricated. The siRNA of the KRAS gene (siKras) was loaded onto the surface of HAp-PEI via electrostatic interaction between siRNA and PEI to design the functionalized HAp-PEI nanoparticle (HAp-PEI/siKras). The HAp-PEI/siKras was internalized into the human PC cells PANC-1 to achieve the maximum transfection efficiency for active tumor targeting. HAp-PEI/siKras effectively knocked down the expression of the KRAS gene and downregulated the expression of the Kras protein in vitro. Furthermore, the treatment with HAp-PEI/siKras resulted in greater anti-PC cells' (PANC-1, BXPC-3, and CFPAC-1) efficacy in vitro. Additionally, the HAp-PEI exhibited no obvious in vitro cytotoxicity in normal pancreatic HPDE6-C7 cells. These findings provided a promising alternative for the therapeutic route of siRNA-targeted gene engineering for anti-pancreatic cancer therapy.
    Keywords:  KRAS gene; anticancer; gene silence; hydroxyapatite; pancreatic cancer cells; siRNA delivery
    DOI:  https://doi.org/10.3390/pharmaceutics13091428
  5. Int J Pharm. 2021 Sep 27. pii: S0378-5173(21)00946-7. [Epub ahead of print] 121140
      The use of natural killer (NK) cells in cell therapy is an attractive next generation strategy for cancer immunotherapy. NK-92 cells (a human NK cell line) have been tested in clinical trial stages, making them an off-the-shelf medicine. Controlling gene expression in NK-92 cells by an artificial delivery system is an available for enhancing NK-92 cell therapy. We report here on the development of a siRNA-loaded lipid nanoparticle (LNP) composed of CL1H6 (CL1H6-LNP), an optimized, pH-sensitive cationic lipid, with efficient gene silencing and low cytotoxicity in NK-92 cells. The hydrophilic head group of the lipid molecule used in preparing these particles largely influences the pKa of the final LNP, and lipids with an amino moiety substituted with a methyl group showed a high gene silencing activity. Compared with myristate and palmitate, the hydrophobic tail of oleate had a high gene silencing activity and cell viability. Analyses of intracellular trafficking indicated that the CL1H6-LNP appeared to escape from the endosomes via membrane fusion, without disrupting the membrane. The mechanism of endosomal escape should contribute to our understanding of efficient gene silencing with a low degree of cytotoxicity. These results therefore suggest that a CL1H6-LNP has promise for delivering siRNA to NK-92 cells.
    Keywords:  NK cell; NK-92; lipid nanoparticle; non-viral; pH-sensitive cationic lipid; siRNA
    DOI:  https://doi.org/10.1016/j.ijpharm.2021.121140
  6. Pharmaceuticals (Basel). 2021 Aug 25. pii: 841. [Epub ahead of print]14(9):
      We previously reported a new polymer, lactic-co-glycolic acid-polyethylenimine (LGA-PEI), as an improved nanoparticle (NP) delivery for therapeutic nucleic acids (TNAs). Here, we further developed two antibody (Ab)-conjugated LGA-PEI NP technologies for active-targeting delivery of TNAs. LGA-PEI was covalently conjugated with a single-chain variable fragment antibody (scFv) against mesothelin (MSLN), a biomarker for pancreatic cancer (PC), or a special Ab fragment crystallizable region-binding peptide (FcBP), which binds to any full Ab (IgG). TNAs used in the current study included tumor suppressor microRNA mimics (miR-198 and miR-520h) and non-coding RNA X-inactive specific transcript (XIST) fragments; green fluorescence protein gene (GFP plasmid DNA) was also used as an example of plasmid DNA. MSLN scFv-LGA-PEI NPs with TNAs significantly improved their binding and internalization in PC cells with high expression of MSLN in vitro and in vivo. Anti-epidermal growth factor receptor (EGFR) monoclonal Ab (Cetuximab) binding to FcBP-LGA-PEI showed active-targeting delivery of TNAs to EGFR-expressing PC cells.
    Keywords:  LGA-PEI polymer; active targeting delivery; nanoparticle; polyethylenimine; therapeutic nucleic acid
    DOI:  https://doi.org/10.3390/ph14090841
  7. Mol Pharm. 2021 Sep 30.
      The study aims to investigate the in vivo distribution, antitumor effect, and safety of cell membrane-penetrating peptide-modified disulfide bond copolymer nanoparticles loaded with small-interfering RNA (siRNA) targeting epidermal growth factor receptor (EGFR) and bromodomain-containing protein 4 (BRD4) in triple-negative breast cancer (TNBC). Polyethylene glycol disulfide bond-linked polyethylenimine (PEG-SS-PEI) was modified with peptides GALA and CREKA and used as vectors to prepare siRNA nanoparticles. The GALA- and CREKA-modified PEG-SS-PEI nanoparticles (GC-NPs) were prepared by mixing siEGFR and siBRD4 (1:1) with GALA-PEG-SS-PEI and CREKA-PEG-SS-PEI (1:1) in an aqueous solution at an N/P ratio of 30:1. Nanoparticles loaded with scrambled siRNA were prepared with the same method. The gene silencing effect on EGFR and BRD4 in vitro was evaluated by Western blotting analysis. TNBC xenograft models were established by subcutaneous injection of MDA-MB-231 cells into female nude mice. At 1, 3, 6, 12, and 24 h after administration of five formulations of Cy5-siRNA (133 μg/10 g) via the tail vein, the mice were observed and imaged for a biodistribution study using an in vivo imaging system. In the pharmacodynamics experiment, tumor-bearing mice were treated with respective siRNA preparations at a dose of 133 μg/10 g for 18 days, and the body weight and tumor size were recorded every other day. The protein expression levels of EGFR, p-EGFR, PI3K, p-PI3K, Akt, p-Akt, BRD4, and c-Myc were determined using Western blotting analysis. Hematological and serum biochemical parameters, organ indices, and HE staining results for the heart, liver, spleen, lung, and kidney were analyzed to evaluate the safety of the nanoparticles. GC-NPs loaded with siEGFR and siBRD4 significantly inhibited the expression of EGFR and BRD4 in vitro. The strongest fluorescence signals were observed in the GC-NP group, especially in tumors, indicating the excellent tumor-targeted delivery of GC-NPs we constructed. Tumor growth was significantly inhibited in the GC-NP-treated group, and the expression of EGFR, p-EGFR, PI3K, p-PI3K, Akt, p-Akt, BRD4, and c-Myc in the tumors decreased by 71%, 68%, 61%, 68%, 48%, 58%, 59%, and 74% compared to the control group, respectively. There was no significant change in hematological parameters, biochemical indices, or tissue morphology in GC-NP-treated mice. SiRNA cotargeting EGFR and BRD4 delivered by GALA- and CREKA-modified PEG-SS-PEI had favorable antitumor effects in vivo toward TNBC with tumor-targeting efficacy and good biocompatibility.
    Keywords:  BRD4; EGFR; nanoparticles; siRNA; triple-negative breast cancer
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.1c00282
  8. Int J Pharm. 2021 Sep 22. pii: S0378-5173(21)00923-6. [Epub ahead of print] 121117
      Small interfering RNAs (siRNA) are attractive and powerful tools to inhibit the expression of a targeted gene. However, their extreme hydrophilicities combined with a negative charge and short plasma half-life counteract their use as therapeutics. Previously, we chemically linked siRNA to squalene (SQ) which self-assembled as nanoparticles (NPs) with pharmacological efficiency in cancers and recently in a hereditary neuropathy. In order to understand the siRNA-SQ NP assembly and fate once intravenously injected, the present study detailed characterization of siRNA-SQ NP structure and its interaction with serum components. From SAXS and SANS analysis, we propose that the siRNA-SQ bioconjugate self-assembled as 11-nm diameter supramolecular assemblies, which are connected one to another to form spherical nanoparticles of around 130-nm diameter. The siRNA-SQ NPs were stable in biological media and interacted with serum components, notably with albumin and LDL. The high specificity of siRNA to decrease or normalize gene expression and the high colloidal stability when encapsulated into squalene nanoparticles offer promising targeted therapy with wide applications for pathologies with gene expression dysregulation.
    Keywords:  2-dioleoyl-sn-glycéro-3-phosphoethanolamine); 3‐dioleoyloxy‐N‐ [2(sperminecarboxamido)ethyl]‐N; Azido-Squalene (N(3)-SQ); Bovine serum albumin (BSA); Lipofectamine 3:1 DOSPA (2; Low density lipoprotein (LDL); N-(hexamethylenyl)-6-oxohexanamide spacer (C6); N‐dimethyl‐1‐propaniminium trifluoroacetate) : DOPE (1; Sybr Green C(32)H(37)N(4)S; biological interaction; cationic squalenaldehyde hydrazinoguanidinium acetate salt (SQ(+)); dibenzylcyclooctyne (DBCO); nanotechnologies; siRNA; structural studies
    DOI:  https://doi.org/10.1016/j.ijpharm.2021.121117
  9. Nanoscale. 2021 Sep 30.
      Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.
    DOI:  https://doi.org/10.1039/d1nr04223h
  10. Nanoscale. 2021 Oct 01.
      Appropriate tuning of robust artificial coatings can not only enhance intracellular delivery but also preserve the biological functions of genetic molecules in gene based therapies. Here, we report a strategy to synthesize controllable nanostructures in situ by encapsulating CRISPR/Cas9 plasmids into metal-organic frameworks (MOFs) via biomimetic mineralization. The structure-functionality relationship studies indicate that MOF-coated nanostructures dramatically impact the biological features of the contained plasmids through different embedding structures. The plasmids are homogeneously distributed within the heterogeneous nanoarchitecture and protected from enzymatic degradation. In addition, the plasmid-MOF structure exhibits excellent loading capability, pH-responsive release, and affinity for plasmid binding. Through in vitro assays it was found that the superior MOF vector can greatly enhance cellular endocytosis and endo/lysosomal escape of sheltered plasmids, resulting in successful knock-in of GFP-tagged paxillin genomic sequences in cancer cell lines with high transfection potency compared to our previous studies. Thus, the development of new cost-effective approaches for MOF-based intracellular delivery systems offers an attractive option for overcoming the physiological barriers to CRISPR/Cas9 delivery, which shows great potential for investigating paxillin-associated focal adhesions and signal regulation.
    DOI:  https://doi.org/10.1039/d1nr02872c
  11. ACS Biomater Sci Eng. 2021 Sep 29.
      Titanium and its alloys have been widely used as bone implants, but for reduced treatment span, improvements are urgently needed to achieve faster and better osteointegration. In this study, we found that miR-132-3p inhibited bone-marrow-derived stem cell (BMSC) osteogenic differentiation via targeting BMP2, and that inhibiting miR-132-3p could significantly improve the osteogenic capability of BMSCs. Moreover, we fabricated a biocompatible selenomethionine (SEMET)-modified polyethylene glycol (PEG)/polyethylenimine (PEI) nanoparticle (SeNP) cross-linked with 0.2% gelatin solutions and delivered miR-132-3p inhibitor to biofunctionalize alkali heat-treated titanium implants, resulting in the development of a novel coating for reverse transfection. The biological performances of PEG/PEI/miR-132-3p inhibitor and SeNP/miR-132-3p inhibitor-biofunctionalized titanium were compared. The biological effects, including cell viability, cytotoxicity, adhesion, cellular uptake, and osteogenic capacity of SeNP/miR-132-3p inhibitor-biofunctionalized titanium implants, were then assessed. Results showed that SeNPs presented appropriate morphology, diameter, and positive zeta potential for efficient gene delivery. The transfection efficiency of the SeNP/miR-132-3p inhibitor was comparable to that of the PEG/PEI/miR-132-3p inhibitor, but the former induced less reactive oxygen species (ROS) production and lower apoptosis rates. Confocal laser scanning microscopy (CLSM) demonstrated that SeNP/miR-132-3p inhibitor nanoparticles released from the titanium surfaces and were taken up by adherent BMSCs. In addition, the release profile showed that transfection could obtain a long-lasting silencing effect for more than 2 weeks. The cell viability, cytotoxicity, and cell spreading of SeNP/miRNA-132-3p inhibitor-biofunctionalized titanium were comparable with those of untreated titanium and the SeNP/miRNA-132-3p inhibitor negative control (NC)-biofunctionalized titanium but resulted in higher ALP activity and osteogenic gene expression levels. In vivo animal studies further certified that SeNP/miRNA-132-3p inhibitor nanoparticles from titanium surfaces promoted osteointegration, which was revealed by microcomputed tomography (micro-CT) and histological observations. Taken together, these findings suggested that selenomethionine-modified PEI-based nanoparticles could achieve better biocompatibility. Moreover, titanium implants biofunctionalized by SeNP/miRNA-132-3p inhibitor nanoparticles might have significant clinical potential for more effective osteointegration.
    Keywords:  miR-132-3p; osteointegration; polyethylenimine; selenomethionine; titanium implant
    DOI:  https://doi.org/10.1021/acsbiomaterials.1c00880