bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2023‒02‒26
eight papers selected by
the Merkel lab
Ludwig-Maximilians University


  1. J Mater Chem B. 2023 Feb 22.
      The success of mRNA vaccines for COVID-19 prevention raised global awareness of the importance of nucleic acid drugs. The approved systems for nucleic acid delivery were mainly formulations of different lipids, yielding lipid nanoparticles (LNPs) with complex internal structures. Due to the multiple components, the relationship between the structure of each component and the overall biological activity of LNPs is hard to study. However, ionizable lipids have been extensively explored. In contrast to former studies on the optimization of hydrophilic parts in single-component self-assemblies, we report in this study on structural alterations of the hydrophobic segment. We synthesize a library of amphiphilic cationic lipids by varying the lengths (C = 8-18), numbers (N = 2, 4), and unsaturation degrees (Ω = 0, 1) of hydrophobic tails. Notably, all self-assemblies with nucleic acid have significant differences in particle size, stability in serum, membrane fusion, and fluidity. Moreover, the novel mRNA/pDNA formulations are characterized by overall low cytotoxicity, efficient compaction, protection, and release of nucleic acids. We find that the length of hydrophobic tails dominates the formation and stability of the assembly. And at a certain length, the unsaturated hydrophobic tails enhance the membrane fusion and fluidity of assemblies and thus significantly affect the transgene expression, followed by the number of hydrophobic tails.
    DOI:  https://doi.org/10.1039/d2tb02783f
  2. Adv Sci (Weinh). 2023 Feb 19. e2206187
      Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID-19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF-A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF-A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP-mRNAs between cells is functionally extended by cells' own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF-A mRNA delivery to cells via LNPs, a fraction of internalized VEGF-A mRNA is secreted via EVs. The overexpressed VEGF-A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA-Seq analysis reveals that as cells' response to LNP-VEGF-A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF-A mRNA in vitro and in vivo. Upon equal amount of VEGF-A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF-A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF-A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF-A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.
    Keywords:  LNP-mRNA; VEGF-A mRNA; endocytosis; extracellular vesicles; in vivo; lipid nanoparticles; luciferase mRNA; mRNA copy number; uptake
    DOI:  https://doi.org/10.1002/advs.202206187
  3. ACS Nano. 2023 Feb 20.
      Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.
    Keywords:  Anti-inflammatory; cytosolic delivery; lung inflammation; polymer; polyplex; siRNA
    DOI:  https://doi.org/10.1021/acsnano.2c08690
  4. Drug Dev Ind Pharm. 2023 Feb 24. 1-13
      Due to the complexity of the pathophysiology of non-small cell lung cancer (NSCLC) and the susceptibility of single chemotherapy to drug resistance, the combination of drugs and small interfering RNA (siRNA) may produce a desired therapeutic effect on NSCLC through the action of multiple pathways. We designed to develop poly-γ-glutamic acid-modified cationic liposomes (γ-PGA-CL) to co-deliver pemetrexed disodium (PMX) and siRNA to treat NSCLC. Firstly, γ-PGA was modified on the surface of PMX and siRNA co-loaded cationic liposomes by electrostatic interaction (γ-PGA modified PMX/siRNA-CL). In order to evaluate whether the prepared γ-PGA modified PMX/siRNA-CL could be taken up by tumor cells and exert significant anti-tumor effects, in vitro and in vivo studies were performed, with A549 cells and LLC-bearing BABL/c mice as experimental models, respectively. The particle size and zeta potential of γ-PGA modified PMX/siRNA-CL was (222.07 ± 1.23) nm and (-11.38 ± 1.44) mV. A preliminary stability experiment showed the complex could protect siRNA from degradation. In vitro cell uptake experiment indicated the complex group exerted stronger fluorescence intensity and expressed higher flow detection value. Cytotoxicity study showed the cell survival rate of γ-PGA-CL was (74.68 ± 0.94)%. Polymerase chain reaction (PCR) analysis and western blot technology displayed that the complex could inhibit the expression of Bcl-2 mRNA and protein to promote cell apoptosis. In vivo anti-tumor experiments represented the complex group showed a significant inhibitory effect on tumor growth, while the vector showed no obvious toxicity. Therefore, the current studies proved the feasibility of combining PMX and siRNA by γ-PGA-CL as a potential strategy for the treatment of NSCLC.
    Keywords:  Non-small cell lung cancer; cationic liposomes; co-delivery; pemetrexed disodium; small interfering RNA
    DOI:  https://doi.org/10.1080/03639045.2023.2182125
  5. Front Bioeng Biotechnol. 2023 ;11 1112755
      Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.
    Keywords:  COVID-19; ligands; lipid nanoparticles; siRNA; surface modification
    DOI:  https://doi.org/10.3389/fbioe.2023.1112755
  6. Eur Biophys J. 2023 Feb 22.
      In applications of bio-inspired nanoparticles (NPs), their composition is often optimised by including ionizable lipids. I use a generic statistical model to describe the charge and potential distributions in lipid nanoparticles (LNPs) containing such lipids. The LNP structure is considered to contain the biophase regions separated by narrow interphase boundaries with water. Ionizable lipids are uniformly distributed at the biophase-water boundaries. The potential is there described at the mean-filed level combining the Langmuir-Stern equation for ionizable lipids and the Poisson-Boltzmann equation for other charges in water. The latter equation is used outside a LNP as well. With physiologically reasonable parameters, the model predicts the scale of the potential in a LNP to be rather low, smaller or about [Formula: see text], and to change primarily near the LNP-solution interface or, more precisely, inside an NP near this interface because the charge of ionizable lipids becomes rapidly neutralized along the coordinate towards the center of a LNP. The extent of dissociation-mediated neutralization of ionizable lipids along this coordinate increases but only slightly. Thus, the neutralization is primarily due to the negative and positive ions related to the ionic strength in solution and located inside a LNP.
    Keywords:  Charge distribution; Ionizable lipids; Langmuir–Stern equation; Nanoparticles; Poisson–Boltzmann equation; Potential
    DOI:  https://doi.org/10.1007/s00249-023-01633-4
  7. bioRxiv. 2023 Feb 19. pii: 2023.02.17.529007. [Epub ahead of print]
      The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury, but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro co-culture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro . Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have therapeutic potential to mitigate lung injury during mechanical ventilation.
    DOI:  https://doi.org/10.1101/2023.02.17.529007
  8. Colloids Surf B Biointerfaces. 2023 Feb 20. pii: S0927-7765(23)00090-5. [Epub ahead of print]224 113212
      Polydimethylsiloxane (PDMS) microfluidic devices with chaotic microfibrous channels were fabricated for the continuous production of lipid nanoparticles (LNPs). Electrospun poly(ε-caprolactone) (PCL) microfibrous matrices with different diameters (3.6 ± 0.3, 6.3 ± 0.4, and 12.2 ± 0.8 µm) were used as a template to develop microfibrous channels. The lipid solution (in ethanol) and water phase were introduced into the microfluidic device as the discontinuous and continuous phases, respectively. The smaller diameter of microfibrous channels and the higher flow rate of the continuous phase resulted in the smaller LNPs with a narrower size distribution. The multiple-splitting of the discontinuous phase and the microscale contact between the two phases in the microfibrous channels were the key features of the LNP production in our approach. The LNPs containing doxorubicin with different average sizes (89.7 ± 35.1 and 190.4 ± 66.4 nm) were prepared using the microfluidic devices for the potential application in tumor therapy. In vitro study revealed higher cellular uptake efficiency and cytotoxicity of the smaller LNPs, especially in the HepG2 cells. The microfluidic devices with microfibrous channels can be widely used as a continuous and high-throughput platform for the production of LNPs containing various active agents.
    Keywords:  Lipid nanoparticle; Microfibrous channels; Microfluidics; Templating; Tumor therapy
    DOI:  https://doi.org/10.1016/j.colsurfb.2023.113212