bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2023‒12‒24
twelve papers selected by
the Merkel lab, Ludwig-Maximilians University



  1. Small. 2023 Dec 21. e2308775
      RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
    Keywords:  lung fibrosis; poly(spermine acrylamide); post-polymerization functionalization; pulmonary delivery; siRNA delivery
    DOI:  https://doi.org/10.1002/smll.202308775
  2. Int J Nanomedicine. 2023 ;18 7605-7635
      Small interfering RNA (siRNA) delivery by nanocarriers has been identified as a promising strategy in the study and treatment of cancer. Short nucleotide sequences are synthesized exogenously to create siRNA, which triggers RNA interference (RNAi) in cells and silences target gene expression in a sequence-specific way. As a nucleic acid-based medicine that has gained popularity recently, siRNA exhibits novel potential for the treatment of cancer. However, there are still many obstacles to overcome before clinical siRNA delivery devices can be developed. In this review, we discuss prospective targets for siRNA drug design, explain siRNA drug properties and benefits, and give an overview of the current clinical siRNA therapeutics for the treatment of cancer. Additionally, we introduce the siRNA chemical modifications and delivery systems that are clinically sophisticated and classify bioresponsive materials for siRNA release in a methodical manner. This review will serve as a reference for researchers in developing more precise and efficient targeted delivery systems, promoting ongoing advances in clinical applications.
    Keywords:  bioresponsive materials; cancer; chemical modifications; delivery systems; small interfering RNA
    DOI:  https://doi.org/10.2147/IJN.S436038
  3. J Control Release. 2023 Dec 13. pii: S0168-3659(23)00796-4. [Epub ahead of print]
      In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
    Keywords:  Lung; Nanoparticles; Nebulisation; Oligonucleotides; Pulmonary delivery; RNA
    DOI:  https://doi.org/10.1016/j.jconrel.2023.12.012
  4. Pharmaceutics. 2023 Dec 16. pii: 2786. [Epub ahead of print]15(12):
      A number of functional nucleic acids, including plasmid DNA (pDNA) and small interfering RNA (siRNA), have been attracting increasing attention as new therapeutic modalities worldwide. Dry pDNA and siRNA powder formulations for inhalation are considered practical in clinical applications for respiratory diseases. However, physical stresses in the powder-forming process may destabilize nucleic acids, particularly when vectors with stabilizing effects are not used. We herein compare the stability of naked pDNA and siRNA through various physical treatments and two powder-forming processes. The structural and functional integrities of pDNA were markedly reduced via sonication, heating, and atomization, whereas those of siRNA were preserved throughout all of the physical treatments investigated. Spray-dried and spray-freeze-dried powders of siRNA maintained their structural and functional integrities, whereas those of pDNA did not. These results demonstrate that siRNA is more suitable for powder formation in the naked state than pDNA due to its higher stability under physical treatments. Furthermore, a spray-freeze-dried powder with a high content of naked siRNA (12% of the powder) was successfully produced that preserved its structural and functional integrities, achieving high aerosol performance with a fine particle fraction of approximately 40%.
    Keywords:  dry powder inhaler (DPI) formulations; naked nucleic acid formulations; nucleic-acid-based medicines; physical stress; plasmid DNA (pDNA); powder formation; small interfering RNA (siRNA); spray drying (SD); spray freeze drying (SFD); stability
    DOI:  https://doi.org/10.3390/pharmaceutics15122786
  5. Curr Opin Biotechnol. 2023 Dec 19. pii: S0958-1669(23)00159-3. [Epub ahead of print]85 103049
      Ribonucleic acid therapeutics have advantages over biologics and small molecules, including lower safety risks, cheaper costs, and extensive targeting flexibility, which is rapidly fueling the expansion of the field. This is made possible by breakthroughs in the field of drug delivery, wherein lipid nanoparticles (LNPs) are one of the most clinically advanced systems. LNP formulations that are currently approved for clinical use typically contain an ionizable cationic lipid, a phospholipid, cholesterol, and a polyethylene glycol-lipid; each contributes to the stability and/or effectiveness of LNPs. In this review, we discuss the immunomodulatory effects associated with each of the lipid components. We highlight several studies in which the components of LNPs have been implicated in cellular sensing and explore the pathways involved.
    DOI:  https://doi.org/10.1016/j.copbio.2023.103049
  6. Pharmaceuticals (Basel). 2023 Nov 21. pii: 1634. [Epub ahead of print]16(12):
      Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
    Keywords:  RNA replicon therapy; RNA replicon vaccines; self-amplifying RNA
    DOI:  https://doi.org/10.3390/ph16121634
  7. Biochemistry (Mosc). 2023 Nov;88(11): 1800-1817
      Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
    Keywords:  cell-penetrating peptides; nucleic acid delivery vehicles; peptide delivery systems; siRNA
    DOI:  https://doi.org/10.1134/S0006297923110111
  8. Cells. 2023 Dec 08. pii: 2803. [Epub ahead of print]12(24):
      p53 is arguably one of the most important tumor suppressor genes in humans. Due to the paramount importance of p53 in the onset of cell cycle arrest and apoptosis, the p53 gene is found either silenced or mutated in the vast majority of cancers. Furthermore, activated wild-type p53 exhibits a strong bystander effect, thereby activating apoptosis in surrounding cells without being physically present there. For these reasons, p53-targeted therapy that is designed to restore the function of wild-type p53 in cancer cells seems to be a very appealing therapeutic approach. Systemic delivery of p53-coding DNA or RNA using nanoparticles proved to be feasible both in vitro and in vivo. In fact, one p53-based therapeutic (gendicine) is currently approved for commercial use in China. However, the broad use of p53-based therapy in p53-inactivated cancers is severely restricted by its inadequate efficacy. This review highlights the current state-of-the-art in this area of biomedical research and also discusses novel approaches that may help overcome the shortcomings of p53-targeting nanomedicine.
    Keywords:  apoptosis; bystander effect; gene therapy; nanoparticles; p53
    DOI:  https://doi.org/10.3390/cells12242803
  9. Daru. 2023 Dec 18.
      OBJECTIVES: The main objective of this work was to review and summarise the detailed literature available on viral nanoparticle and the strategies utilised for their manufacture along with their applications as therapeutic agents.DATA ACQUISITION: The reported literature related to development and application of virus nanoparticles have been collected from electronic data bases like ScienceDirect, google scholar, PubMed by using key words like "viral nanoparticles", "targeted drug delivery" and "vaccines" and related combinations.
    RESULT: From the detailed literature survey, virus nanoparticles were identified as carriers for the targeted delivery. Due to the presence of nanostructures in virus nanoparticles, these protect the drugs from the degradation in the gastrointestinal tract and in case of the delivery of gene medicine, they carry the nucleic acids to the target/susceptible host cells. Thus, artificial viruses are utilised for targeted delivery to specific organ in biomedical and biotechnological areas.
    CONCLUSION: Thus, virus nanoparticles can be considered as viable option as drug/gene carrier in various healthcare sectors especially drug delivery and vaccine and can be explored further in future for the development of better drug delivery techniques.
    Keywords:  Drug delivery; Nano technology; Therapy; Virus gene
    DOI:  https://doi.org/10.1007/s40199-023-00496-6
  10. Pharmaceutics. 2023 Dec 14. pii: 2777. [Epub ahead of print]15(12):
      Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
    Keywords:  NSCLC; immunotherapy; inhalers; liposomes; nanoparticles; passive and active targeting
    DOI:  https://doi.org/10.3390/pharmaceutics15122777
  11. AAPS J. 2023 Dec 22. 26(1): 10
      RNA therapeutics, including siRNAs, ASOs, and PMOs, have great potential to treat human disease. However, RNA therapeutics are too large, too charged, and/or too hydrophilic to cross the cellular membrane and are instead taken up into cells by endocytosis. Unfortunately, the vast majority of RNA therapeutics remain trapped inside endosomes (≥ 99%), which is the sole reason preventing their use to treat cancer, COVID, and other diseases. In contrast, enveloped viruses, such as influenza, also have an endosomal escape problem, but have evolved a highly efficient endosomal escape mechanism using trimeric hemagglutinin (HA) fusogenic protein. HA contains an outer hydrophilic domain (HA1) that masks an inner hydrophobic fusogenic/endosomal escape domain (HA2). Once inside endosomes, HA1 is shed to expose HA2 that, due to hydrophobicity, buries itself into the endosomal lipid bilayer, driving escape into the cytoplasm in a non-toxic fashion. To begin to address the RNA therapeutics rate-limiting endosomal escape problem, we report here a first step in the design and synthesis of a universal endosomal escape domain (uEED) that biomimics the enveloped virus escape mechanism. uEED contains an outer hydrophilic mask covalently attached to an inner hydrophobic escape domain. In plasma, uEED is inert and highly metabolically stable; however, when placed in endo/lysosomal conditions, uEED is activated by enzymatic removal of the hydrophilic mask, followed by self-immolation of the linker resulting in exposure of the hydrophobic indole ring domain in the absence of any hydrophilic tags. Thus, uEED is a synthetic biomimetic of the highly efficient viral endosomal escape mechanism.
    Keywords:  RNA therapeutics; endosomal escape domain; oligonucleotide delivery
    DOI:  https://doi.org/10.1208/s12248-023-00876-5
  12. J Microbiol Methods. 2023 Dec 20. pii: S0167-7012(23)00210-5. [Epub ahead of print] 106876
      Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
    Keywords:  Antibiotics; Cystic Fibrosis CFTR gene; Cystic fibrosis; Mucus; Nanotechnology; Pseudomonas aeruginosa; Therapeutic molecules
    DOI:  https://doi.org/10.1016/j.mimet.2023.106876