bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2020–08–02
seven papers selected by
Laia Caja Puigsubira, Uppsala University



  1. Biochem Biophys Res Commun. 2020 Aug 27. pii: S0006-291X(20)31235-3. [Epub ahead of print]529(3): 747-752
      Transforming growth factor-β (TGF-β) plays a crucial role in the development of epithelial to mesenchymal transition (EMT) and fibrosis, particularly in an ocular disorder such as proliferative vitreoretinopathy (PVR). However, the key molecular mechanism underlying its pathogenesis remains unknown. In the present study, using cultured ARPE-19 cells, we determined that TGF-β initiates a signaling pathway through extracellular signal-regulated kinase (ERK)-mammalian target of rapamycin complex 1 (mTORC1) that stimulates trans-differentiation and fibrosis of retinal pigment epithelium. Blocking this pathway by a TGF-βRI, ERK or mTORC1 inhibitor protected cells from EMT and fibrotic protein expression. TGF-β1 treatment increased reactive oxygen species (ROS) via NOX4 upregulation, which acts downstream of ERK and mTORC1, as the ROS scavenger N-acetylcysteine and a pan-NADPH oxidase (NOX) inhibitor DPI dissipated excess ROS generation. TGF-β1-induced oxidative stress resulted in EMT and fibrotic changes, as NAC and DPI prevented α-SMA, Col4α3 expression and cell migration. All these inhibitors blocked the downstream pathway activation in addition to clearly preventing the activation of its upstream molecules, indicating the presence of a feedback loop system that may boost the upstream events. Furthermore, the FDA-approved drug trametinib (10 nM) blunted TGF-β1-induced mTORC1 activation and downstream pathogenic alterations through ERK1/2 inhibition, which opens a therapeutic avenue for the treatment of PVR in the future.
    Keywords:  Epithelial to mesenchymal transition; Extracellular signal-regulated kinase; Mammalian target of rapamycin; NADPH Oxidase 4; Oxidative stress; Retinal pigment epithelium; Transforming growth factor-β
    DOI:  https://doi.org/10.1016/j.bbrc.2020.06.034
  2. Pharmacol Res Perspect. 2020 Aug;8(4): e00630
      Sulforaphane (SFN), a bioactive phytochemical isothiocyanate, has a wide spectrum of cytoprotective effects that involve induction of antioxidant genes. Nongenomic antioxidant effects of SFN have not been investigated. Brain oxidative stress during inflammation and excitotoxicity leads to neurovascular injury. We tested the hypothesis that SNF exhibits acute antioxidant effects and prevents neurovascular injury during oxidative stress. In primary cultures of cerebral microvascular endothelial cells (CMVEC) and cortical astrocytes from the newborn pig brain, a pro-inflammatory cytokine TNF-α and an excitotoxic glutamate elevate reactive oxygen species (ROS) and cause cell death by apoptosis. Nox4 NADPH oxidase is the main Nox isoform in CMVEC and cortical astrocytes that is acutely activated by TNF-α and glutamate leading to ROS-mediated cell death by apoptosis. The Nox4 inhibitor GKT137831 blocked NADPH oxidase activity and overall ROS elevation, and prevented apoptosis of CMVEC and astrocytes exposed to TNF-α and glutamate, supporting the leading role of Nox4 in the neurovascular injury. Synthetic SFN (10-11 -10-6  mol/L) inhibited NADPH oxidase activity and reduced overall ROS production in CMVEC and astrocytes within 1-hour exposure to TNF-α and glutamate. Furthermore, in the presence of SFN, the ability of TNF-α and glutamate to produce apoptosis in CMVEC and cortical astrocytes was completely prevented. Overall, SFN at low concentrations exhibits antioxidant and antiapoptotic effects in cerebral endothelial cells and cortical astrocytes via a via a nongenomic mechanism that involves inhibition of Nox4 NADPH oxidase activity. SFN may prevent cerebrovascular injury during brain oxidative stress caused by inflammation and glutamate excitotoxicity.
    Keywords:  antioxidants; apoptosis; astrocytes; endothelial cells; excitotoxicity; inflammation; isothiocyanates; neurovascular unit; newborn pigs; oxidative stress; primary cells; sulforaphane
    DOI:  https://doi.org/10.1002/prp2.630
  3. Acta Pharmacol Sin. 2020 Jul 28.
      We previously found that polydatin could attenuate renal oxidative stress in diabetic mice and improve renal fibrosis. Recent evidence shows that NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) contribute to inflammatory and fibrotic processes in diabetic kidneys. In this study we investigated whether polydatin attenuated renal fibrosis by regulating Nox4 in vitro and in vivo. In high glucose-treated rat glomerular mesangial cells, polydatin significantly decreased the protein levels of Nox4 by promoting its K48-linked polyubiquitination, thus inhibited the production of ROS, and eventually decreasing the expression of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1), the main factors that exacerbate diabetic renal fibrosis. Overexpression of Nox4 abolished the inhibitory effects of polydatin on FN and ICAM-1 expression. In addition, the expression of Connexin32 (Cx32) was significantly decreased, which was restored by polydatin treatment. Cx32 interacted with Nox4 and reduced its protein levels. Knockdown of Cx32 abolished the inhibitory effects of polydatin on the expression of FN and ICAM-1. In the kidneys of streptozocin-induced diabetic mice, administration of polydatin (100 mg·kg-1·d-1, ig, 6 days a week for 12 weeks) increased Cx32 expression and reduced Nox4 expression, decreased renal oxidative stress levels and the expression of fibrotic factors, eventually attenuating renal injury and fibrosis. In conclusion, polydatin promotes K48-linked polyubiquitination and degradation of Nox4 by restoring Cx32 expression, thereby decreasing renal oxidative stress levels and ultimately ameliorating the pathological progress of diabetic renal fibrosis. Thus, polydatin reduces renal oxidative stress levels and attenuates diabetic renal fibrosis through regulating the Cx32-Nox4 signaling pathway.
    Keywords:  Cx32; Nox4; diabetic nephropathy; oxidative stress; polydatin; renal fibrosis
    DOI:  https://doi.org/10.1038/s41401-020-0475-6
  4. Glia. 2020 Jul 28.
      Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX-2) in inflammatory neurodegeneration. Cybb-deficient NOX-2 knock-out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 μg/gbw/day LPS. Transcriptome analysis by RNA-seq of total brain tissue indicated increased LPS-induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX-2 KO mice. Validation of up-regulated gene transcripts via qRT-PCR confirmed that LPS-challenged NOX-2 KO mice expressed lower levels of the microglial phagocytosis-related genes Nos2, Cd68, Aif1/Iba1, Cyba, Itgam, and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro-inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX-2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis-related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox.
    Keywords:  NADPH oxidase; lipopolysaccharides; microglia; neurodegeneration; neuroinflammation; phagocytes; radicals
    DOI:  https://doi.org/10.1002/glia.23890
  5. Front Immunol. 2020 ;11 1406
      Monocyte-derived Dendritic cells (Mo-DC) are a distinct DC subset, involved in inflammation and infection, they originate from monocytes upon stimulation in the circulation and their activation and function may vary in autoimmune diseases. In this study we investigate the differences in Mo-DC differentiation and function in patients with Rheumatoid (RA) compared to Psoriatic arthritis (PsA). A significant increase in the Mo-DC differentiation marker CD209, paralleled by a corresponding decrease in the monocytic marker CD14, was demonstrated in RA compared to PsA, as early as 1 day post Mo-DC differentiation. RA monocytes ex-vivo were phenotypically different to PsA, displaying a more mature phenotype associated with altered cellular-morphology, early dendrite formation, and a significant increase in the CD40 marker. In addition, SPICE algorithm flow cytometric analysis showed distinct differences in chemokine receptors distribution in HC compared to PsA and RA CD14+ cells in the blood, with increased expression of the chemokine receptors CCR7 and CXCR4 observed in PsA and RA. In addition CD14+ cells at the site of inflammation showed a different chemokine receptor pattern between PsA and RA patients, with higher expression of CXCR3 and CXCR5 in RA when compared to PsA. The early priming observed in RA resulted in monocyte-endocytosis and antigen-uptake mechanisms to be impaired, effects that were not observed in PsA where phagocytosis capacity remained highly functional. Tofacitinib inhibited early Mo-DC differentiation, decreasing both CD209 and CD40 activation markers in RA. Inhibition of Mo-DC differentiation in response to Tofacitinib was mediated via an imbalance in the activation of NADPH-oxidases NOX5 and NOX2. This effect was reversed by NOX5 inhibition, but not NOX2, resulting in suppression of NOX5-dependent ROS production. In conclusion, RA monocytes are already primed ex vivo to become DC, evident by increased expression of activation markers, morphological appearance and impaired endocytosis capacity. Furthermore, we demonstrated for the first time that NOX5 mediates Mo-DC differentiation and function in response to Tofacitinib, which may alter DC functions.
    Keywords:  NADPH oxidase; differentiation; inflammatory arthritis; monocyte-derived dendritic cells; tofacitinib
    DOI:  https://doi.org/10.3389/fimmu.2020.01406
  6. Antioxid Redox Signal. 2020 Jul 30.
       AIMS: Life-long pain is a hallmark feature of sickle cell disease (SCD). How sickle pathobiology evokes pain remains unknown. We hypothesize that increased cell-free heme due to ongoing hemolysis activates toll-like receptor 4 (TLR4), leading to the formation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Together, these processes lead to spinal microglial activation and neuroinflammation culminating in acute and chronic pain.
    RESULTS: Spinal heme levels, TLR4 transcripts, oxidative stress, and endoplasmic reticulum (ER) stress were significantly higher in sickle mice than controls. In vitro, TLR4 inhibition in spinal cord microglial cells attenuated heme-induced ROS and ER stress. Heme treatment led to a time-dependent increase in the characteristic features of sickle pain (mechanical and thermal hyperalgesia) in both sickle and control mice; this effect was absent in TLR4-knockout sickle and control mice. TLR4 deletion in sickle mice attenuated chronic and hypoxia/reoxygenation (H/R)-evoked acute hyperalgesia. Sickle mice treated with the TLR4 inhibitor TAK242 had significantly reduced chronic hyperalgesia and had less severe H/R-evoked acute pain with quicker recovery. Notably, reducing ER stress with salubrinal ameliorated chronic hyperalgesia in sickle mice.
    INNOVATION: Our findings demonstrate the causal role of free heme in the genesis of acute and chronic sickle pain and suggest that TLR4 and/or ER stress are novel therapeutic targets for treating pain in SCD.
    CONCLUSION: Heme-induced microglial activation via TLR4 in the central nervous system contributes to the initiation and maintenance of sickle pain via ER stress in SCD.
    DOI:  https://doi.org/10.1089/ars.2019.7913
  7. Med Sci Monit. 2020 Jul 26. 26 e925350
      BACKGROUND This study aimed to investigate the mechanisms underlying the neuroprotective effects of vitamin D. MATERIAL AND METHODS Rat primary neuron cells were incubated under a hypoxia condition [a hypoxic chamber mixed with anaerobic gas (90% N₂, 5% CO₂) and 5% O₂] to induce cell injury. Cell transfection was performed to overexpress or suppress the expression of dual oxidase 1 (DUOX1). The malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected using a MDA (A003-2) or SOD (A001-1) kit. DUOX1 mRNA levels were detected using RT-PCR. Hypoxia-inducible factor-1alpha (HIF-1alpha), DUOX1, vitamin D receptor (VDR), NF-kappaB protein expressions were determined by western blotting. Cell apoptosis and reactive oxygen species (ROS) were evaluated by flow cytometry. RESULTS ROS increased significantly after hypoxic treatment. The expressions of HIF-1alpha and DUOX1 were significantly increased after hypoxic treatment. Vitamin D could decrease ROS level, apoptotic neuron cells and DUOX1 expression, and increase VDR expression. Downregulation of DUOX1 significantly decreased MDA level and apoptotic percentages of neuron cells, increased SOD level, and counteracted the hypoxia-induced increase of NF-kappaB signal. Further study showed that overexpression of DUOX1 significantly increased MDA level, ROS level, apoptotic percentages of neuron cells, and NF-kappaB nuclear signaling, while decreased SOD level. Vitamin D significantly counteracted the effects of DUOX1 overexpression induced injury in rat primary neuron cells. CONCLUSIONS Our study indicated that vitamin D may protect neuron cells from hypoxia-induced injury by regulating DUOX1 via the NF-kappaB signaling pathway.
    DOI:  https://doi.org/10.12659/MSM.925350