bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2021–04–04
fourteen papers selected by
Laia Caja Puigsubira, Uppsala University



  1. Free Radic Biol Med. 2021 Mar 28. pii: S0891-5849(21)00180-5. [Epub ahead of print]
      Previous studies suggested that reactive oxygen species (ROS) produced by NADPH oxidase 4 (Nox4) affect the processing of neuropathic pain. However, mechanisms underlying Nox4-dependent pain signaling are incompletely understood. In this study, we aimed to identify novel Nox4 downstream interactors in the nociceptive system. Mice lacking Nox4 specifically in sensory neurons were generated by crossing Advillin-Cre mice with Nox4fl/fl mice. Tissue-specific deletion of Nox4 in sensory neurons considerably reduced mechanical hypersensitivity and neuronal action potential firing after peripheral nerve injury. Using a proteomic approach, we detected various proteins that are regulated in a Nox4-dependent manner after injury, including the small calcium-binding protein S100A4. Immunofluorescence staining and western blot experiments confirmed that S100A4 expression is massively up-regulated in peripheral nerves and dorsal root ganglia after injury. Furthermore, mice lacking S100A4 showed increased mechanical hypersensitivity after peripheral nerve injury and after delivery of a ROS donor. Our findings suggest that S100A4 expression is up-regulated after peripheral nerve injury in a Nox4-dependent manner and that deletion of S100A4 leads to an increased neuropathic pain hypersensitivity.
    Keywords:  NADPH oxidase 4; Nox4; S100A4; knockout mice; nerve injury; neuropathic pain
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.03.021
  2. Antioxidants (Basel). 2021 Mar 23. pii: 498. [Epub ahead of print]10(3):
      In acute myeloid leukemia (AML), a low level of reactive oxygen species (ROS) is associated with leukemic stem cell (LSC) quiescence, whereas a high level promotes blast proliferation. ROS homeostasis relies on a tightly-regulated balance between the antioxidant and oxidant systems. Among the oxidants, NADPH oxidases (NOX) generate ROS as a physiological function. Although it has been reported in AML initiation and development, the contribution of NOX to the ROS production in AML remains to be clarified. The aim of this study was to investigate the NOX expression and function in AML, and to examine the role of NOX in blast proliferation and differentiation. First, we interrogated the NOX expression in primary cells from public datasets, and investigated their association with prognostic markers. Next, we explored the NOX expression and activity in AML cell lines, and studied the impact of NOX knockdown on cell proliferation and differentiation. We found that NOX2 is ubiquitously expressed in AML blasts, and particularly in cells from the myelomonocytic (M4) and monocytic (M5) stages; however, it is less expressed in LSCs and in relapsed AML. This is consistent with an increased expression throughout normal hematopoietic differentiation, and is reflected in AML cell lines. Nevertheless, no endogenous NOX activity could be detected in the absence of PMA stimulation. Furthermore, CYBB knockdown, although hampering induced NOX2 activity, did not affect the proliferation and differentiation of THP-1 and HL-60 cells. In summary, our data suggest that NOX2 is a marker of AML blast differentiation, while AML cell lines lack any NOX2 endogenous activity.
    Keywords:  AML; NADPH oxidase; leukemia; transcriptomics
    DOI:  https://doi.org/10.3390/antiox10030498
  3. Redox Biol. 2021 Mar 19. pii: S2213-2317(21)00095-1. [Epub ahead of print]41 101947
      Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction is linked to oxidative stress and reactive oxygen species (ROS) in neurotoxicity during AD. Impaired mitochondrial metabolism has been associated with mitochondrial dysfunction in brain damage of AD. While the role of NADPH oxidase 4 (NOX4), a major source of ROS, has been identified in brain damage, the mechanism by which NOX4 regulates ferroptosis of astrocytes in AD remains unclear. Here, we show that the protein levels of NOX4 were significantly elevated in impaired astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. The levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), a marker of oxidative stress-induced lipid peroxidation, were significantly also elevated in impaired astrocytes of patients with AD and mouse AD. We demonstrate that the over-expression of NOX4 significantly increases the impairment of mitochondrial metabolism by inhibition of mitochondrial respiration and ATP production via the reduction of five protein complexes in the mitochondrial ETC in human astrocytes. Moreover, the elevation of NOX4 induces oxidative stress by mitochondrial ROS (mtROS) production, mitochondrial fragmentation, and inhibition of cellular antioxidant process in human astrocytes. Furthermore, the elevation of NOX4 increased ferroptosis-dependent cytotoxicity by the activation of oxidative stress-induced lipid peroxidation in human astrocytes. These results suggest that NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in AD.
    Keywords:  Alzheimer's disease; Ferroptosis; Mitochondrial metabolism; NOX4; Oxidative stress
    DOI:  https://doi.org/10.1016/j.redox.2021.101947
  4. Front Oncol. 2021 ;11 632623
      Acute myeloid leukemia (AML) is a heterogeneous disease with poor clinical outcomes. We have previously shown that constitutive activation of NADPH oxidase 2 (NOX2), resulting in over-production of reactive oxygen species (ROS), occurs in over 60% of AML patients. We have also shown that increased ROS production promotes increased glucose uptake and proliferation in AML cells, mediated by changes in carbohydrate metabolism. Given that carbohydrate, lipid, and protein metabolisms are all intricately interconnected, we aimed to examine the effect of cellular ROS levels on these pathways and establish further evidence that ROS rewires metabolism in AML. We carried out metabolomic profiling of AML cell lines in which NOX2-derived ROS production was inhibited and conversely in cells treated with exogenous H2O2. We report significant ROS-specific metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino acid homeostasis and glycolysis. These data provide further evidence of ROS directed metabolic changes in AML and the potential for metabolic targeting as novel therapeutic arm to combat this disease.
    Keywords:  NADPH Oxidase (NOX); acute myeloid leukemia; metabolism; reactive oxygen species; redox signaling
    DOI:  https://doi.org/10.3389/fonc.2021.632623
  5. Vascul Pharmacol. 2021 Mar 29. pii: S1537-1891(21)00032-X. [Epub ahead of print] 106860
      5-Hydroxytryptamine (5-HT)-dependent signaling mediated through its transporter and receptors plays important roles in chronic hypoxic pulmonary hypertension (CHPH), which is associated with aberrant reactive oxygen species (ROS) production. NADPH oxidase 4 (NOX4) is one of the major sources of ROS in pulmonary vasculature, and has been implicated in the development of PH. NOX4 generates H2O2, which can activate the transient receptor potential melastatin 2 (TRPM2) channels, providing Ca2+ signals for cell proliferation and migration. However, the connection between 5-HT, NOX4, ROS and TRPM2 in the context of PH has not been established. Here we examined the level of 5-HT and expression of NOX4 and TRPM2, and their roles in pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration. NOX4 and TRPM2 were upregulated in pulmonary arteries of CHPH rats, which was associated with elevated levels of 5-HT and ROS, and enhanced proliferation and migration in PASMCs. The increase in ROS, and the enhanced proliferation and migration of PASMCs from CHPH rats were mimicked by treating normoxic PASMCs with 5-HT. 5-HT and CH-induced ROS production were reversed by catalase, the NOX1/NOX4 inhibitor GKT137831, and Nox4 siRNA. 5-HT and H2O2 elicited Ca2+ responses were significantly augmented in CHPH PASMCs; and the augmented Ca2+ responses were obliterated by the 2-Aminoethoxydiphenyl borate (2-APB) and Trpm2-specific siRNA. Moreover, 5-HT and CH-induced proliferation and migration were suppressed by Nox4 or Trpm2 siRNA; and simultaneous transfection of both siRNA did not cause further inhibition. These results suggest that the 5-HT and CH-induced PASMC proliferation and migration were mediated, at least in part, by TRPM2 via activation of NOX4-dependent ROS production; and revealed a novel NOX4-ROS-TRPM2 signaling pathway for the pathogenesis of CHPH.
    Keywords:  Chronic hypoxia; NADPH oxidase 4; Pulmonary hypertension; Reactive oxygen species; Transient potential receptor melastatin 2 (TRPM2)
    DOI:  https://doi.org/10.1016/j.vph.2021.106860
  6. Antioxidants (Basel). 2021 Mar 17. pii: 477. [Epub ahead of print]10(3):
      Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling.
    Keywords:  HDAC1/2 oxidation; NOX4; Pseudomonas aeruginosa infection; histone acetylation; lung epithelium; nuclear ROS
    DOI:  https://doi.org/10.3390/antiox10030477
  7. Antioxidants (Basel). 2021 Mar 23. pii: 497. [Epub ahead of print]10(3):
       BACKGROUND: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors.
    OBJECTIVES: To establish whether PDI and Nox-1 cooperate to control platelet function.
    METHODS: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors.
    RESULTS: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1-/- platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals.
    CONCLUSIONS: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.
    Keywords:  NADPH oxidase; metabolic syndrome; platelets; protein disulphide isomerase; redox biology
    DOI:  https://doi.org/10.3390/antiox10030497
  8. Int J Mol Sci. 2021 Mar 23. pii: 3252. [Epub ahead of print]22(6):
      Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.
    Keywords:  HSP70; MnSOD; NADPH oxidase; Nrf2; atrophy; nNOS; oxidative stress; skeletal muscle; unloading
    DOI:  https://doi.org/10.3390/ijms22063252
  9. Int J Mol Sci. 2021 Mar 08. pii: 2729. [Epub ahead of print]22(5):
      Obesity is a global health issue associated with insulin resistance and altered lipid homeostasis. It has been described that reactive oxygen species (ROS) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity are involved in the development of these pathologies. The present study describes the role of endothelial NOX5 expression over adipose tissue by using two experimental systems: NOX5 conditional knock-in mice fed with a high-fat diet and 3T3-L1 adipocytes cultured with conditioned media of NOX5-expressing endothelial cells previously treated with glucose and palmitic acid. Animals expressing NOX5 presented lower body weight gain and less mesenteric and epididymal adipose mass compared to control mice fed with the same diet. NOX5-expressing mice also showed significantly lower glycaemia and improved insulin-induced glucose uptake. In addition, Glut4 and Caveolin 1 (Cav1) expression were significantly increased in the adipose tissue of these animals. Likewise, 3T3-L1 adipocytes treated with conditioned media from NOX5-expressing endothelial cells, incubated with high glucose and palmitic acid, presented a reduction in lipid accumulation and an increase in glucose uptake. Moreover, a significant increase in the expression of Glut4 and Cav1 was also detected in these cells. Taken together, all these data support that, in response to a highly caloric diet, NOX5 endothelial activity may regulate glucose sensitivity and lipid homeostasis in the adipose tissue.
    Keywords:  Caveolin 1; Glut4; NADPH oxidase 5; glucose uptake; lipid homeostasis; obesity
    DOI:  https://doi.org/10.3390/ijms22052729
  10. Oxid Med Cell Longev. 2021 ;2021 6631805
      Stroke is a leading cause of death and disability in humans. The excessive production of reactive oxygen species (ROS) is an important contributor to oxidative stress and secondary brain damage after stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex consisting of membrane subunits and cytoplasmic subunits, regulates neuronal maturation and cerebrovascular homeostasis. However, NADPH oxidase overproduction contributes to neurotoxicity and cerebrovascular disease. NADPH oxidase has been implicated as the principal source of ROS in the brain, and numerous studies have shown that the knockout of NADPH exerts a protective effect in the model of ischemic stroke. In this review, we summarize the mechanism of activation of the NADPH oxidase family members, the pathophysiological effects of NADPH oxidase isoforms in ischemic stroke, and the studies of NADPH oxidase inhibitors to explore potential clinical applications.
    DOI:  https://doi.org/10.1155/2021/6631805
  11. Cells. 2021 Mar 24. pii: 718. [Epub ahead of print]10(4):
      Microglia are activated after ischemic stroke and induce neuroinflammation. The expression of the aryl hydrocarbon receptor (AhR) has recently been reported to elicit cytokine expression. We previously reported that microglial activation mediates ischemic edema progression. Thus, the purpose of this study was to examine the role of AhR in inflammation and edema after ischemia using a mouse middle cerebral artery occlusion (MCAO) model. MCAO upregulated AhR expression in microglia during ischemia. MCAO increased the expression of tumor necrosis factor α (TNFα) and then induced edema progression, and worsened the modified neurological severity scores, with these being suppressed by administration of an AhR antagonist, CH223191. In THP-1 macrophages, the NADPH oxidase (NOX) subunit p47phox was significantly increased by AhR ligands, especially under inflammatory conditions. Suppression of NOX activity by apocynin or elimination of superoxide by superoxide dismutase decreased TNFα expression, which was induced by the AhR ligand. AhR ligands also elicited p47phox expression in mouse primary microglia. Thus, p47phox may be important in oxidative stress and subsequent inflammation. In MCAO model mice, P47phox expression was upregulated in microglia by ischemia. Lipid peroxidation induced by MCAO was suppressed by CH223191. Taken together, these findings suggest that AhR in the microglia is involved in neuroinflammation and subsequent edema, after MCAO via p47phox expression upregulation and oxidative stress.
    Keywords:  AhR; edema; inflammation; ischemia; p47phox
    DOI:  https://doi.org/10.3390/cells10040718
  12. Mol Biol Rep. 2021 Apr 01.
      Epithelial-mesenchymal transition (EMT), transforming growth factor β(TGF-β) and reactive oxygen species(ROS) plays a central role in cancer metastasis. Moreover, nicotinamide adenine dinucleotide phosphate 4(NOX4) is one of the main sources of ROS in lung cancer cells suggesting that NOX4 is associated with tumor cell migration. NF-κB(Nuclear factor-Kappa-B) is known to regulate ROS-mediated EMT process by activating Snail transcription factor in A549 cells. The purpose of this study was to explore the relationship between NF-κB and NOX4 in ROS production during TGF-β induced EMT process. Several fractions have been pooled to evaluates the EMT process on lung cancer cells through real-time PCR, Western Blot and flow cytometry with DCFH-DA probe etc. Cells proliferation and migration activities were monitored by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and wound healing assay respectively. The result showed that TGF-β induction decreased the expression of E-cadherin, increased the Vimentin and the EMT transcription factor Snail in A549 cells. DPI (Diphenyleneiodonium chloride, an inhibitor of NOX4) inhibited the NOX4 expression and reduced ROS production induced by TGF-β, but didn't affect the activation of NF-κB induced by TGF-β (P > 0.05). BAY11-7082 (an inhibitor of NF-κB) inhibited the NF-κB (p65) expression and prevented the increase of NOX4 expression and ROS production induced by TGF-β (P < 0.001), which has also verified reduced TGF-β induced cell migration by inhibiting the EMT process, and also reduced cell proliferation of A549 cells (P < 0.001). The current research confirmed the TGF-β mediated EMT process via NF-κB/NOX4/ROS signaling pathway, NF-κB and NOX4 are likely to be the potential therapeutic targets for lung cancer metastasis.
    Keywords:  A549 cells; Cell migration; Epithelial-mesenchymal transition; NF-κB; NOX4
    DOI:  https://doi.org/10.1007/s11033-021-06268-2
  13. Mol Med Rep. 2021 Jun;pii: 397. [Epub ahead of print]23(6):
      Cerebral ischemia‑reperfusion injury (CIRI) refers to the phenomenon that ischemic injury of the brain leads to the injury of brain cells, which is further aggravated after the recovery of blood reperfusion. Dihydromyricetin (DHM) has an effective therapeutic effect on vascular diseases; however, its role in CIRI has not been investigated. The oxygen and glucose deprivation/reoxygenation (OGD/R) cell model was used on HT22 hippocampal neurons in mice, by oxygen and sugar deprivation. DHM was found to increase the cell viability of HT22 cells following OGD/R induction. The levels of malondialdehyde (MDA) decreased, superoxide dismutase (SOD) and glutathione (GSH) in the OGD/R‑induced HT22 cells increased following DHM treatment, accompanied by the decreased protein expression levels of NOX2 and NOX4. DHM also inhibited cell apoptosis induced by OGD/R, and decreased the protein expression levels of Bax and caspase‑3, and increased the expression levels of Bcl‑2. Moreover, the expression levels of the NF‑E2‑related factor 2 (Nrf2)/heme oxygenase (HO‑1) signaling pathway‑associated proteins in OGD/R‑induced HT22 were increased following DHM treatment, and the effect of DHM on oxidative stress and apoptosis was reversed after the addition of the Nrf2/HO‑1 pathway inhibitor, brusatol. In conclusion, DHM inhibited oxidative stress and apoptosis in OGD/R‑induced HT22 cells by activating the Nrf2/HO‑1 signaling pathway.
    DOI:  https://doi.org/10.3892/mmr.2021.12036
  14. Free Radic Biol Med. 2021 Mar 25. pii: S0891-5849(21)00186-6. [Epub ahead of print]
      Type 2 diabetes mellitus (T2DM) is associated with oxidative stress but the underlying mechanisms promoting oxidative stress as well as its relationship with cardiovascular events is still unclear. In 375 T2DM patients who were followed-up for approximately 5 years we measured the serum levels of soluble NOX2-derived peptide (sNOX2-dp), a marker of Nox2 activation, and albumin, a powerful antioxidant protein. In the entire cohort soluble Nox2 and serum albumin were significantly correlated (r=-0.348, P<0.0001). During the follow-up 49 cardiovascular events (CVE) were registered, of which 45 were non-fatal myocardial infarction (MI); patients with non-fatal MI had significantly higher soluble NOX2/albumin ratio compared to cardiovascular events-free patients. Cox regression analysis showed a significant association between sNox2-dp/serum albumin ratio and the incidental risk of non-fatal MI (HR 1.106, CI95% 1.020-1.198, P=0.014). The study suggests that redox status imbalance negatively influences vascular outcomes in T2DM.
    Keywords:  Nox2; albumin; cardiovascular events; diabetes; oxidative stress
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.03.026