bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2021–10–03
seven papers selected by
Laia Caja Puigsubira, Uppsala University



  1. Cells. 2021 Sep 04. pii: 2315. [Epub ahead of print]10(9):
      Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
    Keywords:  NADH; NADPH; NADPH oxidases; Nox; atherosclerosis; endothelial function; oxidative stress; reactive oxygen species; type 2 diabetes mellitus
    DOI:  https://doi.org/10.3390/cells10092315
  2. Antioxidants (Basel). 2021 Aug 26. pii: 1363. [Epub ahead of print]10(9):
      The p47phox is a key regulatory subunit of Nox2-containing NADPH oxidase (Nox2) that by generating reactive oxygen species (ROS) plays an important role in Angiotensin II (AngII)-induced cardiac hypertrophy and heart failure. However, the signalling pathways of p47phox in the heart remains unclear. In this study, we used wild-type (WT) and p47phox knockout (KO) mice (C57BL/6, male, 7-month-old, n = 9) to investigate p47phox-dependent oxidant-signalling in AngII infusion (0.8 mg/kg/day, 14 days)-induced cardiac hypertrophy and cardiomyocyte apoptosis. AngII infusion resulted in remarkable high blood pressure and cardiac hypertrophy in WT mice. However, these AngII-induced pathological changes were significantly reduced in p47phox KO mice. In WT hearts, AngII infusion increased significantly the levels of superoxide production, the expressions of Nox subunits, the expression of PKCα and C-Src and the activation of ASK1 (apoptosis signal-regulating kinase 1), MKK3/6, ERK1/2, p38 MAPK and JNK signalling pathways together with an elevated expression of apoptotic markers, i.e., γH2AX and p53 in the cardiomyocytes. However, in the absence of p47phox, although PKCα expression was increased in the hearts after AngII infusion, there was no significant activation of ASK1, MKK3/6 and MAPKs signalling pathways and no increase in apoptosis biomarker expression in cardiomyocytes. In conclusion, p47phox-dependent redox-signalling through ASK1, MKK3/6 and MAPKs plays a crucial role in AngII-induced cardiac hypertrophy and cardiomyocyte apoptosis.
    Keywords:  Angiotensin II; apoptosis; cardiac hypertrophy; knockout mice; p47phox; redox-signalling
    DOI:  https://doi.org/10.3390/antiox10091363
  3. Aging (Albany NY). 2021 Sep 29. 13(undefined):
       OBJECTIVE: To verify if AngII/NOX/ROS/MAPK signaling pathway is involved in Doxorubicin (DOX)-induced myocardial injury and if mesenchymal stem cells (MSCs) could enhance the protective effects of valsartan (Val) on attenuating DOX-induced injury in vitro.
    METHODS: Reactive oxygen species (ROS) formation and the protein expression of AT1R, NOX2, NOX4, caspase-3, caspase-9 and MAPK signaling were assessed in H9c2 cardiomyocytes exposed to DOX for 24 h in the absence or presence of Val, NADPH oxidase inhibitor DPI or knockdown and overexpression of NADPH oxidase subunit: NOX2 and NOX4, co-culture with MSCs, respectively. Finally, MTT assay was used to determine the cell viability of H9c2 cells, MDA-MB-231 breast cancer cells and A549 pulmonary cancer cells under Val, DOX and Val+ DOX treatments.
    RESULTS: DOX increased ROS formation and upregulated proteins expression of AT1R, NOX2, NOX4, caspase-3, caspase-9 and MAPK signaling including p-p38, p-JNK, p-ERK in H9c2 cells. These effects could be attenuated by Val, DPI, NOX2 siRNA and NOX4 siRNA. Meanwhile, overexpression of NOX2 and NOX4 could significantly increase DOX-induced ROS formation and further upregulate apoptotic protein expressions and protein expressions of MAPK signaling. MSCs on top of Val further enhanced the protective effects of Val on reducing the DOX-induced ROS formation and downregulating the expression of apoptotic proteins and MAPK signaling as compared with Val alone in DOX-treated H9c2 cells. Simultaneous Val and DOX treatment did not affect cell viability of DOX-treated MDA-MB-231 breast cancer cells or A549 pulmonary cancer cells but significantly improved cell viability of DOX-treated H9c2 cardiomyocytes.
    CONCLUSIONS: AT1R/NOX/ROS/MAPK signaling pathway is involved in DOX-induced cardiotoxicity. Val treatment significantly attenuated DOX-induced cardiotoxicity, without affecting the anti-tumor effect of DOX. MSCs enhance the protective effects of Val on reducing the DOX-induced toxicity in H9c2 cells.
    Keywords:  MAPK signaling pathway; ROS; doxorubicin; mesenchymal stem cells; valsartan
    DOI:  https://doi.org/10.18632/aging.203569
  4. Antioxidants (Basel). 2021 Aug 26. pii: 1356. [Epub ahead of print]10(9):
      Accumulating evidence implicates the histone acetylation-based epigenetic mechanisms in the pathoetiology of diabetes-associated micro-/macrovascular complications. Diabetic kidney disease (DKD) is a progressive chronic inflammatory microvascular disorder ultimately leading to glomerulosclerosis and kidney failure. We hypothesized that histone acetyltransferase p300/CBP may be involved in mediating diabetes-accelerated renal damage. In this study, we aimed at investigating the potential role of p300/CBP in the up-regulation of renal NADPH oxidase (Nox), reactive oxygen species (ROS) production, inflammation, and fibrosis in diabetic mice. Diabetic C57BL/6J mice were randomized to receive 10 mg/kg C646, a selective p300/CBP inhibitor, or its vehicle for 4 weeks. We found that in the kidney of C646-treated diabetic mice, the level of H3K27ac, an epigenetic mark of active gene expression, was significantly reduced. Pharmacological inhibition of p300/CBP significantly down-regulated the diabetes-induced enhanced expression of Nox subtypes, pro-inflammatory, and pro-fibrotic molecules in the kidney of mice, and the glomerular ROS overproduction. Our study provides evidence that the activation of p300/CBP enhances ROS production, potentially generated by up-regulated Nox, inflammation, and the production of extracellular matrix proteins in the diabetic kidney. The data suggest that p300/CBP-pharmacological inhibitors may be attractive tools to modulate diabetes-associated pathological processes to efficiently reduce the burden of DKD.
    Keywords:  NADPH oxidase; diabetes; epigenetics; histone acetylation; nephropathy; oxidative stress; p300/CBP
    DOI:  https://doi.org/10.3390/antiox10091356
  5. Free Radic Biol Med. 2021 Sep 22. pii: S0891-5849(21)00739-5. [Epub ahead of print]176 149-161
      Corneal alkali burn, one of the most serious ophthalmic emergencies, is difficult to be cured by conservative treatments. It is well known that oxidative stress, inflammation and neovascularization are the main causes of corneal damage after alkali burn, but its underlying mechanism remains to be elucidated. Here, we reported that the expression and phosphorylation (Ser616) of mitochondrial fission protein Drp1 were up-regulated at day 3 after alkali burn, while mitochondrial fusion protein Mfn2 was down-regulated. The phosphorylation of ERK1/2 in corneas was increased at day 1, 3, 7 and peaked at day 3 after alkali burn. In human corneal epithelial cells (HCE-2), NaOH treatment induced mitochondrial fission, intracellular ROS production and mitochondrial membrane potential disruption, which was prevented by Drp1 inhibitor Mdivi-1. In corneas, Mdivi-1 or knockdown of Drp1 by Lenti-Drp1 shRNA attenuated alkali burn-induced ROS production and phosphorylation of IκBα and p65. In immunofluorescence staining, it was detected that Mdivi-1 also prevented NaOH-induced nuclear translocation of p65 in HCE-2 cells. Moreover, the expression of NADPH oxidase NOX2 and NOX4 in corneas peaked at day 7 after alkali burn. Mdivi-1, Lenti-Drp1 shRNA or the mitochondria-targeted antioxidant mito-TEMPO efficiently alleviated activation of NF-κB, expression of NOX2/4 and inflammatory cytokines including IL-6, IL-1β and TNF-α in corneas after alkali burn. In pharmacological experiments, both Mdivi-1 and NADPH oxidases inhibitor Apocynin protected the corneas against alkali burn-induced neovascularization. Intriguingly, the combined administration of Mdivi-1 and Apocynin had a synergistic inhibitory effect on corneal neovascularization after alkali burn. Taken together, these results indicate that Drp1-dependent mitochondrial fission is involved in alkali burn-induced corneal injury through regulating oxidative stress, inflammatory responses and corneal neovascularization. This might provide a novel therapeutic target for corneal injury after alkali burn in the future.
    Keywords:  Corneal alkali burn; Corneal neovascularization; Inflammation; Mitochondrial fission; NADPH oxidase; Oxidative stress
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.09.019
  6. Cells. 2021 Sep 03. pii: 2312. [Epub ahead of print]10(9):
      The Transforming Growth Factor-beta (TGF-β) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-β pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-β/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.
    Keywords:  NOX; NOX inhibitors; ROS; TGF-beta; hepatocellular carcinoma; liver fibrosis; liver regeneration
    DOI:  https://doi.org/10.3390/cells10092312
  7. Int J Mol Sci. 2021 Sep 17. pii: 10041. [Epub ahead of print]22(18):
      Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.
    Keywords:  DNA damage; EMF; ROS; carcinogenesis; cation channels; voltage-gated calcium channels
    DOI:  https://doi.org/10.3390/ijms221810041